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ABSTRACT
Recurrent neural networks (RNNs) have demonstrated impres-

sive results for virtual analog modeling of audio effects. These net-
works process time-domain audio signals using a series of matrix
multiplication and nonlinear activation functions to emulate the
behavior of the target device accurately. To additionally model the
effect of the knobs for an RNN-based model, existing approaches
integrate control parameters by concatenating them channel-wisely
with some intermediate representation of the input signal. While
this method is parameter-efficient, there is room to further improve
the quality of generated audio because the concatenation-based
conditioning method has limited capacity in modulating signals.
In this paper, we propose three novel conditioning mechanisms
for RNNs, tailored for black-box virtual analog modeling. These
advanced conditioning mechanisms modulate the model based on
control parameters, yielding superior results to existing RNN- and
CNN-based architectures across various evaluation metrics.

1. INTRODUCTION

Audio effect modeling [1, 2] involves creating algorithms or mod-
els that replicate the behavior of specific audio effects to emu-
late vintage hardware [3, 4, 5] or digital audio effect chains [6].
This technique is called the digital emulation of audio effects,
also known as virtual analog (VA) modeling. Methods for VA
modeling can be categorized into white-box, grey-box, and black-
box approaches. White-box methods [7, 8] typically require com-
plete knowledge of the target system, achieving high-quality em-
ulation but requiring a time-consuming design process. Grey-box
approaches [9, 10, 11, 12, 13, 14] introduce inductive bias of the
system using input-output measurements, allowing flexibility while
maintaining interpretability. However, understanding the target de-
vice remains crucial and may not be always attainable. To get rid
of reliance on prior knowledge constraints, black-box approaches
have recently gained popularity for efficient VA modeling, rely-
ing solely on device measurements. Black-box approaches of-
ten use neural networks to model the target device. In the litera-
ture, this active research field proposes mainly three architectures:
convolutional-based (CNN) [15, 16, 17, 18, 19, 20], recurrent-
based (RNN) [21, 22, 23, 24] neural networks, and Neural Or-
dinary Differential Equations (Neural ODEs) [25].

To accurately and fully replicate the behavior of devices, it
is essential to consider the control parameters, a.k.a. knob val-
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ues, in audio effect emulation. Neural networks typically represent
control knob values by conditioning vectors, injecting condition-
ing information via a certain conditioning mechanism. For CNN-
based architectures, different conditioning mechanisms have been
studied, such as local conditioning [17, 26] and feature-wise linear
modulation (FiLM) [27]. For RNN-based architectures, however,
the prevailing conditioning method studied in the literature re-
mains to be the simple concatenation-based method, which simply
concatenates the conditioning vector channel-wisely with some in-
termediate representation of the input audio. For Neural ODEs-
based architectures, the employment of conditioning mechanisms
has not been studied, to the best of our knowledge [25].

Strengths of the concatenation method include its parameter
efficiency, simplicity, and ease of implementation. However, it
has the downside of being too simple to provide enough capacity
to model complicated input/output relationships, resulting in lim-
ited modeling performance. Taking inspiration from the work of
Richard et al. [28], who use the hypernetwork [29] to use the con-
ditioning information to generate conv1d weights for their CNN-
based model for mono-to-binaural synthesis, we aim to explore
the application of hypernetworks to harness control parameters to
adapt the weights of RNN models for audio effect modeling. This
adaptation can be achieved through either generation or modula-
tion by the output of another neural network. Thus, we investigate
using hypernetwork variants as conditioning mechanisms for vir-
tual analog modeling of audio effects.

Besides, we note that previous research [30] has presented var-
ious examples indicating that an RNN model may have limitations
in modeling the “transients” for compressor modeling. Motivated
by this observation, we proposed a metric to objectively evaluate
transient reconstruction loss based on the transient modeling syn-
thesis method (TMS) [31]. These objective results offer insight
into a model’s complete transient modeling capability.

Accordingly, our work presents three main contributions: firstly,
we propose three hypernetwork-based conditioning methods for
RNNs to handle control parameters. We demonstrate that all pro-
posed conditioning methods outperform the concatenation method
through objective evaluation and show lower training compute.
Secondly, we introduce a new objective evaluation metric for esti-
mating transient reconstruction error. Finally, we compared CNN-
based and RNN-based models with different conditioning meth-
ods. The results show that the proposed method for RNNs can
achieve better audio quality and more accurate transient recon-
struction. We provide audio samples online,1 and share the source
code with an open-source license.

1https://yytung.notion.site/HyperRNN
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2. METHODS FOR BLACK-BOX MODELING

Black-box modeling approaches can be achieved using different
architectures, e.g., CNNs, RNNs, and neural ODEs. Each archi-
tecture has its advantages and disadvantages with mainly two con-
siderations: model performance and real-time usage.

Many CNN-based models for VA modeling are modified from
WaveNet [32], the famous architecture for processing time-domain
signals. The model’s advantages are the high quality of emulation,
parallel computation, and fast inference time running on GPUs.
However, when considering real-time usage on CPUs, CNNs tend
to be slower than RNNs [24]. Another concern is the high latency.
As mentioned in [33], the lower bound of the latency of CNNs is
the size of the receptive field. When the target effect requires a
large receptive field to achieve better quality, such as compressor
[20], the high latency problem will harm real-time usage.

RNN-based models are usually based on long-short term mem-
ory (LSTM) or gated recurrent units (GRU). Owing to their recur-
rent nature, both architectures can have access to information from
the past and accordingly excel in modeling sequential data. These
networks demonstrate high quality in VA modeling while requir-
ing fewer parameters compared to CNNs [24, 19]. Additionally,
they boast fast inference times and low latency for real-time ap-
plications because of their step-by-step mechanism, which aligns
with the real-time audio input fed to the system sample-by-sample.
Despite their real-time performance advantages, RNN-based mod-
els encounter several challenges. First, unstable training is a com-
mon issue attributed to vanishing or exploding gradients, leading
to increased development efforts in model design. Second, unlike
CNN-based models, RNN-based models cannot leverage parallel
computation due to their recurrent behavior, thus missing out the
benefits of GPU acceleration, leading to longer training time.

Neural ODEs use the ODE mechanism to emulate the first- and
second-order diode-clipper [25]. Neural ODE can achieve perfor-
mance comparable to RNN-based neural networks but with fewer
parameters. Due to its properties, Neural ODE can achieve arbi-
trary sample rates, which indicates that it can save the computa-
tion effort of resampling, which the previous architecture cannot.
While the method shows promising results, it has not been tested
on complex systems such as the pedal or the amp.

3. DATASET

We consider two datasets and the modeling of two types of effects
in this study. We provide some details below.

3.1. Teletronix LA-2A compressor

Existing datasets [34, 35] typically provide specific device set-
tings (a.k.a., “snaptshots”). However, our task requires addition-
ally a range of control parameter information. Hence, we chose the
Teletronix LA-2A compressor as a target device. The Teletronix
LA-2A compressor has been widely used in previous studies on
VA modeling of compressors [19, 10], and the dataset was com-
piled by Hawley et al. [36]. As outlined in the audio effects taxon-
omy presented in [37], the LA-2A compressor is categorized under
nonlinearity with long-range dependencies.

The behavior of the LA-2A compressor is governed by two
primary parameters: the switching control and the peak reduction
control. The switching control determines whether the LA-2A op-
erates in limit or compress mode. Meanwhile, the peak reduction

control knob controls the degree of compression applied to the
signal. Their input signal included noise and various instrument
clips, ensuring comprehensive coverage of the device’s behavior.
The dataset consists of approximately 20 hours of recordings at a
sampling rate of 44.1kHz. In our research, we utilized a specific
subset of this dataset, concentrating exclusively on the compress
mode of the data. This subset encompasses peak reduction values
ranging from 0 to 100 in increments of 10, following the settings
outlined in [10]. We partitioned the dataset using an 80/10/10 ratio
for the train/validation/test sets. Each conditioning information is
encountered during training while varying audio contents test the
model’s generalizability at the inference stage.

3.2. Boss OD-3

It is vital to assess our methods across different effect types. Be-
cause we already have the LA-2A compressor, which is a type
of effect with long-range dependencies, we aim to include a de-
vice of nonlinearity with short-term memory types, such as the
overdrive pedal. To our knowledge, there is no publicly available
fully-conditioned overdrive pedal dataset. Hence, given its status
as a classic overdrive pedal, we gathered data from the Boss OD-3
overdrive pedal on our own.

The Boss OD-3 pedal is a famous overdrive pedal, initially
introduced in 1997.2 A subsequent pedal version was released in
2021, featuring only minor differences. For this study, we focus
on modeling the 1997 pedal version. It is equipped with three dis-
tinct knobs, offering precise control over its operational parame-
ters. The “level” knob regulates post-gain, determining the output
volume after the nonlinear clipping stage. The “tone” knob adjusts
equalization by blending bass and treble frequencies, influencing
perceived brightness or darkness. Finally, the “gain” knob deter-
mines the degree of distortion applied to the signal, acting as a
pre-gain mechanism amplifying the input signal before clipping
takes place. We collected the conditioned Boss OD-3 dataset on
our own with the following specifics. Among the three control
parameters of Boss OD-3, we do not consider the “level” control,
for such an effect can be readily achieved in the digital domain by
multiplying with a constant. For “tone” and “gain”, we segmented
their control range into five equal intervals, providing each knob
with five distinct control values, from 0 to 4, each representing
the index of the interval. Recordings were directly from the Boss
OD-3 device, using signals such as white noise, guitar, bass, drum
loops, and vocals as the input signals. Each input signal was about
6 minutes long and was recorded at a 48kHz sampling rate. In to-
tal, our dataset comprises approximately 150 minutes and includes
25 cases, with each tone and gain knob offering five different con-
trol values. We divided the dataset into training, validation, and
test sets using an 80/15/5 ratio. The model has been trained using
all conditioning information during training, while varying audio
contents test the model’s generalizability at the inference stage.

We share this dataset publicly for reproducibility. Please visit
the demo page to find the link.

4. PROPOSED APPROACH

While the proposed conditioning methods can be in general ap-
plied to most RNN architectures, for simplicity we consider the

2https://www.boss.info/us/promos/40th_
anniversary_compact_pedals/
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case of using the standard RNN below to introduce our methods.
The standard RNN formulation is as follows:

ht = tanh(Whht−1 +Wxxt + b)

Here, ht represents the hidden state at the tth step and also the
output from the current step of the RNN cell. The two weight ma-
trices, Wh and Wx, are for the previous hidden state ht−1 and the
input signal xt, respectively. Additionally, there is one bias vector
b. The feature maps calculated from Wh and Wx are denoted as
Fh

c and Fx
c .

Fh
c = Whht−1, Fx

c = Wxxt

We note that the weight and bias remain fixed throughout the entire
time sequence, a concept known as weight-sharing [38].

4.1. FiLM-RNN

The first method uses the feature-wise linear modulation (FiLM).
While FiLM has been used as the conditioning module for CNN-
based models such as Mirco-TCN [19], it has not been applied to
the RNN-based models for VA modeling, to our best knowledge.
The FiLM layer’s objective is to modulate the target network based
on the conditioning input signal. Specifically, FiLM involves two
steps: the FiLM-ed generator and FiLM-ed operation. Given the
conditioning signal ϕ, the FiLM-ed generator aims to learn two
functions, f and g, which output the coefficients αi,c and βi,c:

αi,c = f(ϕ), βi,c = g(ϕ)

αi,c and βi,c are then applied to modulate the feature map Fi,c via
feature-wise linear transformation, termed the FiLM-ed operation:

FiLM(Fi,c, αi,c, βi,c) = αi,cFi,c + βi,c

The subscripts in αi,c, βi,c, and Fi,c refer to the cth input feature
for the ith layer. We discarded the subscript i because the archi-
tecture used for VA modeling often uses only one single layer of
the recurrent cell [24]. In practice, functions f and g are achieved
by few neural layers and are learned end-to-end from the data.

As depicted in Figure 1, we inject the external conditioning
vector ϕ into the FiLM-ed generator. The FiLM-ed generator will
predict two groups of scaling coefficients and shifting coefficients,
(αh

c , βh
c ), (αx

c , βx
c ), corresponding to Fh

c and Fx
c . These coeffi-

cients will be computed with the FiLM-ed operation to modulate
the model’s behavior with the corresponding control parameters.

FiLM(Fh
c , α

h
c , β

h
c ) = αh

cF
h
c + βh

c

FiLM(Fx
c , α

x
c , β

x
c ) = αx

cF
x
c + βx

c

4.2. StaticHyper-RNN

FiLM uses the conditional signals to modulate the feature maps
F. In other words, the conditional signals do not affect the weight
matrices W . In contrast, the idea of hypernetwork is to affect the
weight matrices W directly. Depending on the conditional signals,
the RNN would use different weight matrices W to process an in-
put signal, as shown in Figure 2. Specifically, the proposed con-
ditioning mechanism is detailed as follows: given a conditioning
vector ϕ, the mechanism aims to learn the functions fx, fh, and fb
to generate the weight matrices Wx, Wh, and the bias vector b.

fx(ϕ) = Wx, fh(ϕ) = Wh fb(ϕ) = b

Figure 1: The architecture of the FiLM-RNN, with ϕ representing
the conditioning vector, h representing the hidden state, x denoting
the input signa. The FiLM-ed generator aims to produce scaling
and shifting coefficients for feature-wise linear modulation of the
feature maps.

Figure 2: The architecture of the StaticHyper-RNN, with ϕ repre-
senting the conditioning vector, h representing the hidden state, x
denoting the input signal. The MLP aims to generate the weight
matrix Wh and Wx to perform matrix multiplication.

The target network, which takes the input signal and hidden state
as the input, only provides the matrix operation without learn-
ing the weight matrix itself, and the functions fx, fh, and fb are
learned to generate the target matrix through stochastic gradient
descent. These functions are typically implemented as a neural
network, e.g., using a multi-layer perceptron (MLP) architecture.

The key differences among standard RNN, LSTM, and GRU
are the size of the learnable weights and the additional mecha-
nisms. For LSTM, the hypernetwork generates four weights cor-
responding to the four gates of LSTM, while for GRU, the model
generates three weights. The mechanism is called StaticHyper-
RNN because the proposed approach generates weights once and
maintains them fixed across the entire sequence.

4.3. DynamicHyper-RNN

The concept of a “dynamic” hypernetwork was introduced in [29],
where the mechanism for dynamically modifying the weights of
RNNs at each step was proposed. Similar to the discussion in 4.2,
the primary purpose of the dynamic hypernetwork is originally not
for conditioning, either. However, in our study, we apply this con-
cept to VA modeling, dynamically adjusting the weights of RNNs
based on control parameters, for potentially stronger conditioning.
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Figure 3: The architecture of the DynamicHyper-RNN mecha-
nism: ϕ representing the conditioning vector, h representing the
hidden state of the mainRNN, x denoting the input signal, and ĥ
representing the hidden state of the hyperRNN. The hyperRNN
generates the feature Zo, then learns an additional transformation
to modulate the output of the feature map generated from the input
h and x.

In traditional RNNs, weights remain fixed throughout the se-
quence, meaning each step employs the same weights to generate
results. In contrast, the DynamicHyper-RNN dynamically gener-
ates weights using another recurrent neural network, allowing for
varying weights across each time step. We can use a smaller recur-
rent neural network, termed as hyperRNN, to generate the weights
for the main recurrent neural network directly, denoted as main-
RNN. As shown in Figure 3, while StaticHyper only uses ϕ as in-
put to generate the weights for RNN, DynamicHyper uses not only
ϕ but also ht−1 as the input to generate the weights. The input xm

t

refers to the input audio signal, while the input xp
t is constructed

by concatenating hm
t−1 and the conditioning vector ϕ, namely:

xp
t =

(
hm
t−1

ϕ

)
The two components hyperRNN and mainRNN can be formu-

lated with different equations. Using the superscripts p and m to
denote the variables for each of them, and omitting the bias term,
hyperRNN (“p”) and mainRNN (“m”) entail respectively:

hp
t = tanh(W p

hh
p
t−1 +W p

xx
p
t )

hm
t = tanh(dh(zh)⊙Wm

h hm
t−1 + dz(zx)⊙Wm

x xm
t )

The functions dh and dz represent learnable transformations, and
zh and zx are the features generated by the transformation from
the hyperRNN. The ⊙ operation means the element-wise multipli-
cation. The features zh and zx resulting from the transformation
of hp

t can be expressed as:

fh(h
p
t ) = zh, fx(h

p
t )= zx

where the functions fh and fx can be implemented by neural net-
work layers in practice. The hyperRNN offers time-varying weights
across each step, relaxing the share-weight strategy used in stan-
dard RNNs. We named our proposed models DynamicHyperRNN
because the weights are dynamically modified at each step.

4.4. Discussion

From a machine learning point of view, all of the three proposed
conditioning methods can actually be viewed as hypernetwork-
based conditioning methods. For FiLM-based conditioning, the

FiLM-ed generator serves as the hypernetwork, generating scaling
and shifting parameters to interact with the feature map of the tar-
get network. For StaticHyper-based conditioning, the mechanism
generates weights of RNNs using an MLP, with the MLP acting as
the hypernetwork for the architecture. For DynamicHyper-based
conditioning, smaller RNNs are employed to dynamically modu-
late weights based on control parameters, with these smaller RNNs
serving as the hypernetwork.

5. EXPERIMENTAL SETUP

5.1. Baseline

As our focus in this paper is to improve the conditioning mecha-
nism for RNN-based VA modeling, the baseline approach to com-
pare against our proposed methods would be the concatenation-
based conditioning methods for RNNs. However, besides RNNs,
we are also interested in seeing how the combination of advanced
conditioning methods with RNNs can rival CNN-based methods,
focusing on the fidelity and audio quality of modeling instead of
other aspects such as real-time factors and latency.

For CNN-based models, we adopt the micro-TCN [19] and
GCN [20] as baselines, as these models have been utilized in pre-
vious studies. For RNN-based models, we pick LSTM and GRU,
which have demonstrated impressive results in modeling distortion
circuits [24]. For TCN and GCN, we explore two conditioning
mechanisms: the concatenation method and FiLM. The latter has
been utilized in [19] for modeling compressor control parameters.
For RNN-based baselines, we only use the concatenation method
for conditioning, the prevailing approach in the literature. In what
follows, we will use the following naming principle: [control-
model]. The former represents the control mechanism, and the
latter represents the model used. For example, FiLM-TCN means
the TCN backbone with FiLM conditioning.

5.2. Model implementation details

We implement all the models using PyTorch in this work. For
fair comparison, we configure the hyperparameters of the imple-
mented models in a way such that they share similar number of
trainable parameters. Specifically, we set the hidden state size to
32 for the backbone GRU and LSTM models. The FiLM-GRU
and FiLM-LSTM architectures use 2 layers of MLP with a hidden
size of 32 as the FiLM-ed generator. Both StaticHyper-GRU and
StaticHyper-LSTM utilize the MLP architecture for weight gener-
ation, featuring a hidden size of 8 and 3 layers. The DynamicHyper-
GRU and DynamicHyper-LSTM employ smaller GRU and LSTM
networks as the hypernetwork, each with a hidden size 8. The
function that transforms the hidden state output by the smaller
GRU or LSTM to the feature vector z, along with the transform
function d discussed in Section 4.3, are implemented by 2 layers
of MLP with a hidden size of 32.

For TCN, we adopted the model architectures proposed in
[19]. As for GCN, we followed the model architectures outlined
in [20]. We chose a channel width of 24 for TCN and 32 for GCN
so that they have similar number of parameters as the RNN-based
models. When modeling different devices, we varied the number
of layers, kernel sizes, and dilation growth rates for the CNN-based
models. This variation is because different receptive fields are suit-
able for modeling different types of effects. For instance, [16]
suggests that a short receptive field can model distortion circuits,
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Figure 4: The diagram illustrates the proposed transient metric.
The blue color represents the signal in the time domain, while the
orange color signifies the signal in the discrete cosine transform
(DCT) domain. The algorithm extracts the transient signal and
calculates the spectral loss in the DCT domain.

while [20] employs a long receptive field to model compressors.
To model the Boss OD-3, we stacked 10 layers with a kernel size
of 3 and dilation growth of 2 as the hyperparameters, resulting in
a receptive field of 2047 samples. For LA-2A, we stacked 9 layers
with a kernel size of 5 and dilation growth of 3, leading to a recep-
tive field of 39365 samples. For FiLM-TCN and FiLM-GCN, we
utilized 3 layers MLP with a hidden size of 32 as the FiLM-ed gen-
erator. All the MLP layers have LeakyReLU activation functions
with slope 0.1 between each layer except for the last one.

5.3. Training

The implemented models are trained by minimizing carefully se-
lected loss functions to achieve high-quality emulation. We em-
ploy a combination of time- and frequency-domain losses, includ-
ing the L1 loss and the Multi-resolution STFT loss utilized in pre-
vious studies [19]. We use multi-resolution STFT loss, with three
FFT window sizes: 128, 512, and 2048. All models are trained
using the Adam optimizer with an initial learning rate of 1e-3, 100
epochs, and a batch size 32. The learning rate decays by half af-
ter five epochs of training. Lastly, we normalize the condition-
ing value to −1 to 1 for all models. For Boss OD-3, RNN-based
models are trained using backpropagation through time every 2048
samples, reflecting the device’s short-term memory characteristics.
Conversely, for LA-2A, which concerns with long-range depen-
dencies, the models are trained through every 8192 samples. For
CNN-based models, the input audio size is determined by “the re-
ceptive field+buffer size−1,” as outlined in [19]. Accordingly, we
set the buffer size to 2048 samples and 8192 samples correspond-
ing to the Boss OD-3 dataset and LA-2A dataset, respectively.

6. EVALUATION

6.1. The proposed transient metric

To provide deeper insights into the performance of different mod-
els, we propose a novel metric to evaluate the transient reconstruc-
tion quality, inspired by the transient modeling synthesis method
(TMS) outlined in [31]. While the TMS method has been there for
more than two decades, to our best knowledge, the adaptation of

TMS to construct a transient-centered objective metric for assess-
ing the performance of VA modeling, or other audio generation
tasks in general, has not been attempted before. Moreover, the
TMS algorithm was not implemented in Python yet. We reimple-
ment it based on sms-tools package3 to facilitate its use in research
today. As depicted in Figure 4, the TMS approach assumes that an
audio signal can be decomposed into three components: sinusoids,
transients, and noise. Here is a detailed breakdown: starting with
the input audio signal, we initiate the process by applying sinu-
soidal analysis to retrieve the amplitude, frequency, and phase in-
formation to generate sinusoids. Subsequently, these sinusoids are
subtracted from the original signal, resulting in the first residual
signal, which includes the transient parts of the audio. This first
residual signal is then transformed to the DCT domain, as it is eas-
ier to analyze transient signals in the DCT domain than in the time
domain [31]. Next, we employ block-by-block sinusoidal analysis
to synthesize the transient signal in the DCT domain, subsequently
applying inverse DCT to restore it to the time domain.

Following the TMS principle, we reconstruct the audio using
TMS and isolate the DCT-domain transient part of the audio. Sub-
sequently, we employ STFT loss to compute the transient’s recon-
struction error. We opt to utilize the DCT-domain transient part as
input due to its ease of analysis via sinusoidal methods.

6.2. Objective evaluation

Model Condition OD-3 (Overdrive) Params
L1 STFT LUFS CF RMS Transient

LSTM

Concat 0.123 1.901 0.524 2.982 1.259 25.997 4769
FiLM 0.145 1.057 0.248 1.834 0.552 20.322 22561
StaticHyper 0.146 1.031 0.221 2.051 0.451 20.106 40449
DynamicHyper 0.149 0.695 0.199 2.431 0.402 12.968 21857

GRU

Concat 0.120 1.933 0.455 2.932 1.096 27.338 3585
FiLM 0.011∗ 0.536† 0.176 0.676∗ 0.401 12.504 17217
StaticHyper 0.017 0.698 0.165 1.650 0.318† 12.347† 30369
DynamicHyper 0.150 0.428∗ 0.075∗ 0.883 0.153∗ 11.308∗ 20289

TCN
Concat 0.033 0.928 0.305 1.177 0.671 27.634 21769
FiLM 0.044 0.698 0.338 0.894 0.842 33.678 29849

GCN
Concat 0.013† 0.792 0.202 0.776† 0.447 19.103 19824
FiLM 0.149 0.672 0.141† 1.200 0.276 24.474 32368

Table 1: Evaluation on the Boss OD-3 device test set. We denote
the lowest error with ∗ and the second lowest error with †. Lower
values indicate better quality for all metrics.

Model Condition LA2A (Compressor) Params
L1 STFT LUFS CF RMS Transient

LSTM

Concat 0.105 1.326 1.328 2.471 3.182 26.315 4641
FiLM 0.105 0.630 1.446 2.359 3.119 21.592 22529
StaticHyper 0.012 0.633 1.468 2.046 3.347 22.438 40441
DynamicHyper 0.008 0.427 0.466 2.618 1.010 22.0662 21697

GRU

Concat 0.108 0.507 0.716 2.081 1.640 21.002 3489
FiLM 0.011† 0.597 1.383 2.006† 3.081 15.825∗ 17185
StaticHyper 0.008∗ 0.371∗ 0.543 2.386 1.211 20.437 30361
DynamicHyper 0.109 0.377† 0.377† 1.919∗ 0.819† 19.826† 20169

TCN
Concat 0.099 0.579 0.743 2.223 1.499 31.485 28609
FiLM 0.036 0.447 0.263∗ 2.242 0.585∗ 30.827 35953

GCN
Concat 0.102 0.657 1.416 2.278 3.079 20.745 25904
FiLM 0.023 0.635 1.013 2.107 2.149 30.423 37408

Table 2: Evaluation on the LA-2A device test set. We denote the
lowest error with ∗ and the second lowest error with †. Lower
values indicate better quality for all metrics.

3https://github.com/MTG/sms-tools
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Besides transients, we employ commonly-adopted metrics to
evaluate the model’s performance from multiple perspectives. Re-
garding reconstruction quality, we employed the L1 loss and multi-
resolution STFT loss. To assess loudness, we utilized the pyloud-
norm [39] to estimate perceptual loudness error (LUFS). In mea-
suring the system’s dynamics, we utilized the crest factor (CF) and
RMS error in the dB scale to estimate the dynamics error.

Table 1 presents the result of objective evaluation for the Boss
OD-3, the nonlinear effect with short-term memory. Focusing on
RNN-based models, all three proposed methods outperform the
concatenation method in LSTM and GRU models across several
metrics. Despite having fewer parameters, GRU-based models
surpass LSTM-based models. DynamicHyper-GRU exhibits the
best results across four metrics, showcasing the model’s high ca-
pability. While FiLM-GRU and StaticHyper-GRU yield similar
results, the former works better for frequency-related metrics, and
the latter works better for loudness and dynamics metrics. No-
tably, all the proposed methods exhibit better transient reconstruc-
tion quality compared to the concatenation method. This suggests
that our methods can enhance the model’s ability to capture tran-
sients while the concatenation method struggles to handle them.

Table 1 also displays the performance of CNN-based models.
GCN outperforms TCN in terms of quality, and for both models,
FiLM demonstrates a more effective conditioning ability than the
concatenation method. Comparing the CNNs and RNNs, we see
that the gating mechanism seems to be crucial for modeling over-
drive effects. Upon comparing the performance between GRU and
GCN, we observed that Concat-GRU yields worse quality than
Concat-GCN and FiLM-GCN. However, our proposed models can
achieve better or comparable results than FiLM-GCN. Regarding
transient reconstruction, we observe that TCN and GCN strug-
gle to model the transient, while the proposed conditioned meth-
ods with LSTM and GRU work better. This illustrates that the
advanced conditioning mechanism can retain the advantages of
RNNs (e.g., real-time usage) and improve model performance.

Table 2 presents the results of modeling the LA-2A, the non-
linear audio effect with time dependency. We focus on the result
for RNN-based models first. Comparing GRU and LSTM, GRU
demonstrates superior quality. Among the proposed three condi-
tioning mechanisms, DynamicHyper-GRU consistently ranks as
either the best or the second best, showcasing its strength. We
conjecture that this is due to the behavior of time-varying weights,
which resembles that of a compressor. Compressors can be inter-
preted as applying time-varying gain [10]. Another observation is
that StaticHyper-GRU outperforms FiLM-GRU. As discussed in
6.2, FiLM-GRU is good at modeling frequency content. However,
for compressors, dynamic information holds greater importance.
From the perspective of model architecture, FiLM-GRU applies
the same scaling and shifting coefficients to every model step, lim-
iting its ability to handle time information effectively.

Table 2 also indicates that TCN outperforms GCN in model-
ing compressors. Comparing FiLM-TCN, StaticHyper-GRU, and
DynamicHyper-GRU, we observe that FiLM-TCN achieves bet-
ter results in loudness and dynamic metrics, while the others ex-
cel in STFT and transient performance. We infer that CNN-based
models can capture longer-time information with a larger recep-
tive field, which is beneficial for modeling compressors. However,
Table 2 shows that it may struggle with handling transients.

Models GFLOPs
Concat-GRU 0.325
FiLM-GRU 0.307
StaticHyper-GRU 0.003
DynamicHyper-GRU 1.907
Concat-GCN 59.388
FiLM-GCN 58.701

Table 3: The computational cost is measured in GFLOPs. We
evaluate the processing of one-second audio samples at a sampling
rate 48kHz for each model and calculate the GFLOPs. Smaller
numbers indicate less compute.

6.3. GFLOP analysis

To study the computational cost, we computed the floating point
operations (FLOPs) for one-second 48kHz audio samples, using
an open-source Python package.4 We selected a conditioning vec-
tor size of 2, corresponding to the Boss OD-3 experiments in our
work. As indicated in Table 3, FiLM-GRU and StaticHyper-GRU
demonstrate lower compute than the concatenation method. This
discrepancy arises because the concatenation method requires ad-
ditional computation for the conditioning signal at each step. In
contrast, with FiLM-GRU, the conditioning information remains
fixed during inference, so the computation of scaling and shift-
ing coefficients is done only once. However, we still perform
element-wise multiplication at each step. Therefore, the compute
needed by FiLM-GRU and Concat-GRU is similar. In the case of
StaticHyper-GRU, the pre-generated and fixed weights eliminate
the need for further computation to handle the conditioning infor-
mation, resulting in significantly lower compute than the previous
two models. Finally, DynamicHyper-GRU, despite demonstrating
superior performance across several metrics, requires higher com-
putational resources, approximately six times greater than Concat-
GRU. This increased demand is due to the model’s necessity to
modulate weights over time.

6.4. Spectrum analysis

We analyzed the result of GRU with different conditioning meth-
ods in the frequency domain using clips from the Boss OD-3, with
knob values setting to 3 and tone values 4. We consider only this
knob setting here, because other cases lead to similar results. We
computed the STFT loss for both the target and predicted clips and
calculated the spectrum difference. As depicted in Figure 5, the
concatenation method exhibits the greatest differences between the
ground truth and the predictions, particularly in the high-frequency
area. In contrast, the proposed conditioning methods show fewer
discrepancies. However, all methods have problems in accurately
modeling high-frequency content. This limitation may stem from
the aliasing effects or the neural network’s capacity to handle high
frequencies. Additionally, we observed significant discrepancies
near the 0 frequency for all methods, indicative of DC bias errors.

7. DISCUSSION

We discuss below direction of future improvement, as well as how
our model is empirically grounded and linked to deep learning

4https://github.com/MrYxJ/calculate-flops.
pytorch/tree/main
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Figure 5: The diagram illustrates the spectrum difference observed
in the Boss OD-3 test clips. All the proposed conditioning methods
yield superior results compared to the Concatenation method.

(DL) and digital signal processing (DSP) principles.

FiLM and StaticHyper. To efficiently inject the condition-
ing information, we focus on the modulation potential, which is
why DL can yield impressive results across various domains. At
a higher level, our result suggests that FiLM and StaticHyper can
be considered as lying on the two ends of the spectrum in terms of
their modulation potential. FiLM employs fewer parameters than
StaticHyper to modulate the intermediate feature map through lin-
ear transformation, limiting its modification ability to scale and
shift coefficients. In contrast, StaticHyper allows a model to deter-
mine its weights directly based on conditioning information, fully
leveraging the potential offered by such information. Although
FiLM uses fewer parameters, our compute analysis in Section 6.3
indicates that StaticHyper requires significantly fewer computa-
tional resources despite having more parameters. This phenomenon
underscores the importance of analyzing the emulated models from
multiple perspectives. A potential area for improvement lies in the
conditioning representation. Our work normalized the condition-
ing value to −1 to 1 and fed it to FiLM or StaticHyper. Exploring
alternative representations of the raw knob value may lead to better
results. From a DL perspective, optimizing the conditioning repre-
sentation can enhance the quality of results on unseen conditions.

DynamicHyper and time-varying. We illustrate the advan-
tage of DynamicHyper on two key factors. First, from a DL per-
spective, the model employs a relaxed weight-sharing strategy.
This means the model can identify shared information across se-
quences while customizing weights for each step. Such a strategy
enhances the expressivity of RNNs. Second, from a DSP view-
point, the model offers a more intuitive representation of time-
varying systems. While standard RNNs can produce different re-
sults at each step due to the different hidden states, this also limits
the model’s expressivity. DynamicHyper can greatly improve a
model’s expressivity by better exploiting time-dependent informa-
tion. Moreover, we note that the way DynamicHyper is imple-
mented in this paper is a straightforward case. There might be
more advanced ways to utilize DynamicHyper, e.g., by using the
signal from previous steps as the conditioning signal, that can be
explored in future research.

Real-time implementation. While we present in Section 6.3
a compute analysis, we do not analyze the real-time factors of our
models yet, for it makes more sense if the models are implemented
and optimzied in C++. We plan to do so in the future.

8. CONCLUSIONS

This study has showcased advanced conditioning mechanisms for
black-box virtual analog modeling, leveraging hypernetworks to
enhance the modulation potential of neural networks. We assess
our proposed methods across several dimensions, including recur-
rent units, device types, objective metrics, and compute analysis.
In terms of recurrent units, we demonstrate their effective utiliza-
tion with LSTM and GRU models. Regarding devices, our method
surpasses the concatenation method across two types of nonlinear
devices, namely those with short-term memory and time-dependent
nonlinearity effects. We present results across several metrics, in-
cluding time and frequency domain metrics, as well as a novel
transient-related metric. Additionally, we calculate the FLOPs of
the proposed methods, noting that FiLM-RNN and StaticHyper-
RNN exhibit lower computational cost. While DynamicHyper-
RNN requires higher computational cost, it leads to better objec-
tive scores than the other models.
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