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ABSTRACT

Recently, with the advent of new performing headsets and goggles,
the demand for Virtual and Augmented Reality applications has
experienced a steep increase. In order to coherently navigate the
virtual rooms, the acoustics of the scene must be emulated in the
most accurate and efficient way possible. Amongst others, Feed-
back Delay Networks (FDNs) have proved to be valuable tools for
tackling such a task. In this article, we expand and adapt a method
recently proposed for the data-driven optimization of single-input-
single-output FDNs to the multiple-input-multiple-output (MIMO)
case for addressing spatial/space-time processing applications. By
testing our methodology on items taken from two different data-
sets, we show that the parameters of MIMO FDNs can be jointly
optimized to match some perceptual characteristics of given mul-
tichannel room impulse responses, overcoming approaches avail-
able in the literature, and paving the way toward increasingly effi-
cient and accurate real-time virtual room acoustics rendering.

1. INTRODUCTION

The market of consumer electronics has lately experienced an in-
crease of the number of headsets and goggles for Augmented Re-
ality (AR) and Virtual Reality (VR). For instance, we can mention
Meta Quest 3, HTC VIVE, HTC Cosmos Elite, Sony PlayStation
VR, and the recently introduced Apple Vision Pro. Hand in hand,
the number of AR/VR applications has grown as well, providing
the user increasingly immersive experiences [1]. Although, for
many years, the success of such applications has fallen heavily
on the shoulders of computer vision, acoustics modeling is lately
being put on the same level as deemed necessary to level up the
quality of the virtual scene [1]. Hence, there is an urgent need for
highly-efficient and accurate algorithms able to make the virtual
scene navigation as coherent and natural as possible [2, 3].

Acoustics rendering in AR/VR applications is typically asso-
ciated with the mere navigation of the virtual scene [4,5], but other
applications recently met the interest of the research community.
For instance, the space-time rendering of musical performance in
concert halls is becoming a trendy topic, as it potentially allows

∗The authors wish to thank Enzo De Sena for the helpful discussions.
†This work was partially supported by the European Union under the

Italian National Recovery and Resilience Plan (NRRP) of NextGenera-
tionEU, partnership on “Telecommunications of the Future” (PE00000001
- program “RESTART.”)
Copyright: © 2024 Riccardo Giampiccolo et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 4.0 International Li-

cense, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

the users to attend a concert from remote by precisely choosing
the seat, with all the spatial characteristics that come with it [6, 7].
Room acoustics is usually tackled following either model-based or
convolution-based approaches [8]. The latter are the most straight-
forward as they entail the convolution between the impulse re-
sponse (IR) acquired by means of a microphone and the audio sig-
nal itself. However, such methods are typically not tabled in this
scenario, due to the high computational cost that prevents multi-
dimensional convolutions to be executed in real-time [8]. As a
matter of fact, in order to grasp the spatial characteristics of an
acoustic environment, it is desirable to acquire multichannel Room
Impulse Responses (RIRs) by means of, e.g., higher-order micro-
phones positioned in different points in space, and still take into
account Head-Related Transfer Functions (HRTFs), enabling an
even higher level of personalization and realism for the listener [9].
Hence, in this work, we are interested into methodologies that al-
low us to render multichannel RIRs in a cost-effective fashion.

Introduced by Gerzon in the 70s [10], Feedback Delay Net-
works (FDNs) are among the most known and used systems for
artificial reverberation. FDNs are digital filters characterized by
N absorbing delay lines whose outputs are first fed back through a
scalar matrix and then mixed together to provide the reverberated
signal. Moreover, FDNs are characterized by a low number of pa-
rameters and low storage requirements, being thus well-suited for
real-time applications. The FDN parameters are usually set an-
alytically in order to obtain certain acoustic characteristics, such
as a certain reverberation time [11, 12] or echo density [13, 14].
With the aim of removing human intervention, genetic algorithms
have been recently considered for optimizing said parameters and
matching measured RIRs [3, 15, 16]. Then, with the advent of
differentiable digital signal processing, new methodologies have
been introduced, either using FDNs as part of a pipeline involving
convolutional neural networks [17], or optimizing some FDN pa-
rameters in a reference-free fashion [18]. No fully-differentiable
FDN has been proposed until the work in [19], where all the FDN
parameters are optimized and learned through automatic differen-
tiation in order to match some perceptual characteristics of target
RIRs. Neither said approach nor other approaches of the litera-
ture are, however, applied to learn all the parameters of multiple-
input-multiple-output (MIMO) FDNs. In fact, the method pro-
posed in [19] entails only single-input-single-output (SISO) time-
domain FDNs.

In this article, we extend the approach presented in [19] for
SISO FDNs to the MIMO case by jointly optimizing the param-
eters of MIMO FDNs to match perceptual qualities of multichan-
nel RIRs. We show that by employing a cost function that com-
bines two measures of perceptual features, i.e., the energy decay
curve and the echo density profile, we are able to learn the afore-
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Figure 1: MIMO FDN with three delay lines (N = 3).

mentioned parameters such that the FDN matches said features for
each channel j of the target J-channel RIR. It is worth stressing
that we limit the scope of this article to matching the frequency-
independent decay in the time domain, and we leave for future
work the extension to time-frequency decays [20]. We evaluate the
proposed methodology taking into account measured RIRs sam-
pled from two different datasets, namely the AIR dataset [21] and
the HOMULA-RIR dataset [22], and we compare our results with
those obtained by extending the method shown in [16] to the MIMO
case. Our approach turns out to be characterized by the best perfor-
mance paving the way towards increasingly efficient and accurate
methods for real-time multichannel RIR rendering.

2. MIMO FEEDBACK DELAY NETWORKS

Defined N as the number of delay lines, u[n] ∈ RK as the vector
of input signals, and y[n] ∈ RJ as the vector of output signals, a
MIMO FDN can be described by the following discrete-time equa-
tions [23]

y[n] = Cs[n] +Du[n]
s[n+m] = As[n] +Bu[n]

, (1)

where B ∈ RN×K is the input gain matrix, C ∈ RJ×N is the out-
put gain matrix, A ∈ RN×N is the feedback matrix, D ∈ RJ×K

is the direct gain matrix, and s[n] ∈ RN denotes the output of
the delay lines at time index n. The lengths of the delay lines ex-
pressed in samples are described by m = [m1, ...,mN ]T, being
thus s[n + m] := [s1[n+m1], ..., sN [n+mN ]]T. It is worth
noticing that, if m = 1N , s[n] corresponds to the vector of state
variables at index n, and the MIMO FDN can be described by
means of the state-space formalism. Hence, FDNs can be, in gen-
eral, thought of as generalized versions of state-space systems with
delays different than one. In addition, m are typically chosen to
be co-prime in order to increase the echo density [13].

In this work, however, we consider as a prototype the MIMO
FDN shown in Fig. 1, since we found it being more suited to be op-
timized by means of the proposed automatic differentiation frame-
work; this will be better explained in Sec. 3. In particular, such a
MIMO FDN can be described by means of the following equations

y[n− µ] = G (Cs[n] +Du[n])
s[n+m] = As[n] +Bu[n]

, (2)

where G ∈ RJ×J is a diagonal matrix containing real scaling pa-
rameters and µ := [µ1, . . . , µJ ]

T is a vector containing the direct
path delays. It follows that matrix O(z) in Fig. 1 is a diagonal
matrix having on the main diagonal [z−µ1 , . . . , z−µJ ]. Finally, in
our work, we consider the delays m to be fractional [19].

Unitary orthogonal matrices, such as the Hadamard or the Hou-
seholder matrices [24], are typically chosen as the prototype for the
feedback matrix A. In fact, being unilossless, they ensure stability
regardless of the delays introduced in the FDN [25]. Then, losses
are introduced by multiplying such a feedback matrix by a diago-
nal matrix containing scalar values designed to render a particular
reverberation time [18].

Although designs of FDNs that include tone correction and
attenuation filters are present in the literature [20, 26, 27], in this
article, we focus on FDNs characterized by frequency-independent
parameters, i.e., the entries of A, B, C, and D are real-valued
scalars. Finally, given the time-domain nature of parameters, the
stability of the system can be easily guaranteed at training time,
thanks to the reparametrization explained in the following section.

3. DIFFERENTIABLE MIMO FEEDBACK DELAY
NETWORKS

In this section, we discuss how it is possible to learn and optimize
the parameters of a differentiable implementation of the MIMO
FDN shown in Fig. 1 by adapting the method proposed in [19] for
the SISO case to the MIMO case.

The proposed method entails an iterative optimization proce-
dure that relies on the same training engine employed for training
deep neural networks [28]. We aim at minimizing a loss function
L between the target J-channel RIR h[n] ∈ RJ and the output of
the differentiable MIMO FDN ĥ[n] ∈ RJ at each time instant n,
considering as input the set of Kronecker deltas ∆[n] ∈ {0, 1}K .

At each iteration, the trainable MIMO FDN parameters θ un-
dergo an optimization step involving the gradient ∇Lθ computed
via reverse-mode automatic differentiation [19, 29]. There are no
precise directions for the optimization of MIMO FDNs; however,
typically, SISO FDNs are optimized taking into account just the
late reverberation, as early reflections are handled differently [8].
Instead, we aim at jointly modeling early reflections and reverber-
ant tails in order to fully take advantage of the efficient recursive
structure characterizing MIMO FDNs.

As far as the training procedure is concerned, we first normal-
ize the multichannel RIR. Although different normalization strate-
gies can be considered, in this work, we divide each channel by
the squared Frobenius norm of the multichannel RIR, i.e., g, and
we store such a value in matrix G such that G = gIJ , with IJ
being an J × J identity matrix. According to (2), this matrix will
be later used to re-scale the output of the MIMO FDN.

We then remove the initial µj samples to ensure that the first
sample of the jth channel always contains the direct path. We store
such values in vector µ since these will be re-introduced at infer-
ence time using matrix O(z) according to (2) (see Fig. 1). In or-
der to get a consistent multichannel RIR, we zero-pad the channels
such that they are all characterized by the same number of samples
Lx. In particular, this value is set equal to the number of samples
of the longest stripped RIR, i.e., Lx = Lj − µj with j = jmin s.t.
µjmin = minj{µj}Jj=1, being Lj the original length in samples of
the jth channel. At this point, we compute the reverberation times
T60,j for each channel j, and we define Tmax

60 = maxj{T60,j}Jj=1.
As a further step, we trim all of the channels such that they have
length Lh = ⌈Tmax

60 · fs⌉ with fs being the sampling frequency. In
fact, after Tmax

60 , we consider the multichannel RIR characterized
by not-meaningful information, such as background noise, which,
if taken into account, would badly condition the training process;
in addition, the energy would be so low as to cause numerical er-
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rors when using single-precision floating point numbers, leading
to unwanted behaviors in the reverberant tails.

Finally, we optimize input, output, and direct gain matrices,
the feedback matrix, and the delays m expressed as fractional de-
lays. Then, we would like all the parameters but A to be non-
negative, i.e., we would like to use B ∈ RN×K

≥0 , C ∈ RJ×N
≥0 ,

D ∈ RJ×K
≥0 , A ∈ RN×N , and m ∈ RN

≥0. This is to let the
gains not affect the polarity of the reflections, which is only deter-
mined by the feedback matrix. In order to enforce nonnegativity,
we consider a nonlinear function f≥0 : R → R≥0; in particular,
we choose f≥0(x) = |x| as it has shown to be effective in previ-
ous works [19, 28]. Thus, although we learn the parameters in an
unconstrained fashion, what we actually use in the MIMO FDN
are their nonnegative counterparts, e.g., B = [b1, . . . ,bK ] with
entries bk = [f≥0(b̃k,1), ..., f≥0(b̃k,N )]T, where the symbol (̃·)
indicates the unconstrained learnable parameters.

3.1. Trainable Feedback Matrix

Let W ∈ RN×N be an unconstrained real-valued learnable matrix
and let matrix U ∈ RN×N be defined as

U = exp
(
WTr −WT

Tr

)
, (3)

where WTr is the upper triangular part of W. Given that WTr −
WT

Tr is skew-symmetric by construction and that matrix exponen-
tial maps skew-symmetric matrices onto orthogonal matrices [30],
we can state that U is an orthogonal matrix. It follows that U is
also unilossless despite the values assumed by W. Thus, we may
think to reparametrize the feedback matrix A exploiting U as [18]

A = UΓ , (4)

where Γ ∈ RN×N
[0,1) is a learnable diagonal attenuation matrix. In

other words, instead of learning directly a unilossless matrix, we
learn the entries of the unconstrained matrix W, which then are
mapped onto A by means of (4) [18, 19]. Losses are, instead,
modeled entirely by matrix Γ that, in turn, is defined as

Γ = diag(g(γ1), ..., g(γN )) , (5)

where γ1, . . . , γN are real unconstrained scalars, and

g(x) =
1

1 + e−x
(6)

is the sigmoid function. Equation (6) allows us to map the un-
constrained attenuation coefficients γn onto the sigmoid codomain
such that they take values in the range (0, 1).

Thanks to this reparametrization, the gradients are able to tra-
verse the computational graph and reach the unconstrained entries
of W and Γ, thus enabling the optimization of A.

3.2. Differentiable Delay Lines

Delay lines can be easily implemented in the discrete-time domain
as shift operations applied to buffers that collect past samples.
However, such an operation is not differentiable. Hence, in [19],
we proposed a way for implementing such FDN blocks in the fre-
quency domain. In particular, we first zero-pad and compute the
Fast Fourier Transform (FFT) of the buffered signal, then we mul-
tiply the discrete spectrum by a conjugate symmetric fractional de-
lay filter response. Finally, we obtain the shifted time-domain sig-
nal by computing the Inverse FFT. We refer the interested reader
to [19] for further details about the implementation.

3.3. Loss Function

We adapt the loss function proposed in [19] for training time-
domain SISO FDNs to the MIMO case. Such a loss function is
composed of two terms: (i) an error for the energy decay curve
(EDC) and (ii) an error for the echo density profile (EDP), which
is meant just as a regularization term.

Let h[n] := [h1[n], . . . , hJ [n]]
T be a multichannel IR of Lh

samples and J channels at time instant n. We then define the mul-
tichannel EDC as e[n] := [ε1[n], . . . , εJ [n]]

T, where the generic
εj [n] is computed via Schroeder’s backward integration as follows

εj [n] =

Lh∑
τ=n

h2
j [τ ] . (7)

The corresponding L2-loss term is defined as

LEDC =

∑
n∥e[n]− ê[n]∥22∑

n∥e[n]∥22
, (8)

where ê[n] := [ε̂1[h], . . . , ε̂J [n]]
T with ε̂j [n] =

∑Lh
τ=n ĥ

2
j [τ ] is

the EDC of the predicted IR ĥ[n] with sum and subtract operations
applied channel-wise.

Following what done in [19], the loss term in (8) is then reg-
ularized by means of an additional term named Soft EDP, which
is meant to control the echo density of the predicted IR. In par-
ticular, the Soft EDP is derived as a differentiable approximation
of the well-known normalized echo density profile [31]. Defined
p[n] := [η1[n], . . . , ηJ [n]]

T as the multichannel Soft EDP, the
generic channel Soft EDP ηj [n] can be written as

ηj [n] =
1

erfc(1/
√
2)

n+ν∑
τ=n−ν

w[τ ]gκ(|hj [τ ]| − σn) , (9)

where erfc(·) is the complementary error function, w[τ ] is a ta-
pered window of length (2ν+1) such that

∑
τ w[τ ] = 1, whereas

gκ(x) := g(κx) indicates the κ-scaled sigmoid function (with
κ ≫ 1) and σn is the standard deviation of the IR values falling
within the window centered at time index n. Unlike the original
formulation, the Soft EDP defined in (9) is differentiable. Hence,
it can be used in the learning procedure to regularize the echo den-
sity of the produced IR [19] with

LEDP =
1

Lh

∑
n

∥p[n]− p̂[n]∥22 , (10)

where p̂[n] := [η̂1[h], . . . , η̂J [n]]
T is the Soft EDP of the predicted

IR. By combining (8) and (10), we can finally write down the loss
function

L = LEDC + λLEDP , (11)

where λ is a positive real hyperparameter.

3.4. Parameter Initialization

We implement the proposed differentiable MIMO FDN with N =
16 delay lines in Python using PyTorch. For each of the considered
examples, the differentiable MIMO FDN is trained for a maximum
of 1000 iterations. In particular, we employ a single Adam opti-
mizer with learning rate of 0.1 acting on W, B, C, D, and m.
Moreover, all the parameters of the FDN are initialized with no
prior knowledge of the multichannel RIR h[n].
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Figure 2: Seminar room configuration of the multichannel RIR
considered in Sec. 4.3.

Then, for all ıȷ, we set B̃(0)
ıȷ ∼ N (0, 1

N
) and C̃

(0)
ıȷ = 1

N
. We

let D̃(0)
ıȷ = 1 and we initialize W̃(0) and Γ̃(0) such that W̃(0)

ıȷ ∼
N (0, 1

N
) and γ̃(0)

ı ∼ N (0, 1
N
). We set m̃(0) so that m̃(0)

i = ψm̃⋆
i

with m̃⋆
i ∼ Beta(α, β), for i = 1, ..., N , with α ≥ 1 and β > α.

We set ψ = 1024 as in [19], together with α = 1.1 and β = 6
such that a maximum possible delay of 64 ms and a mean value of
about 10 ms are ensured. We linearly vary κn, i.e., the parameter
controlling the sigmoid scaling in the differentiable EDP loss term,
from 102 to 105 with n = 0, ..., Lh − 1. Finally, we empirically
set the hyperparameter λ = 0.5 as, in our experiments, it turns out
to balance the two loss terms in (11).

4. EVALUATION

We evaluate the proposed methodology considering measured mul-
tichannel RIRs (resampled at 16 kHz) taken from two distinct
datasets.

In particular, in Sec. 4.2, we consider the simpler case ofK =
1 input and J = 2 outputs – thus, a single-input-multiple-output
(SIMO) case – in the context of binaural rendering by employ-
ing the Aachen Impulse Response (AIR) dataset [21]. The AIR
corpus comprises Binaural Room Impulse Responses (BRIR) ac-
quired in four low-reverberant rooms (e.g., studio booth, meeting
room, etc.) with and without a dummy head. Amongst others,
we select one of the BRIRs acquired in the meeting room with
dummy-head-source distance equal to 2.25 m. The IDs of the
selected BRIRs are air_meeting_1_1_4 (left ear) and air_
meeting_0_1_4 (right ear), which are then assigned to channel
j = 1 and j = 2, respectively, to form the target multichannel
RIR. As a further step, we trim the last part of the multichannel
RIR by setting L1 = L2 = 2T̄60 = 2 · 0.23 s, i.e., twice the av-
erage T60 reported in [21], in order to remove possible noise that
would impair the training procedure.

Then, in Sec. 4.3 we take into account the HOMULA-RIR
dataset [22], a corpus of multichannel RIRs acquired in a seminar
room by means of Higher-Order Microphones (HOMs) and a uni-
form linear array. In particular, we select the signal coming from
the V capsule (i.e., the fifth capsule of the microphone) of all the
HOMs shown in Fig. 2, i.e., the first HOM of the first row, the
third HOM of the third row, and the fifth HOM of the fifth row.
We consider the two sources, S1 and S2, acting at the same time
by summing the two acquired impulse responses for each of the
three microphones. Hence, in this example, we consider a multi-
channel RIR with K = 2 inputs and J = 3 outputs. The IDs of

the RIRs are:

• (rir-S1-R1-HOM1, rir-S2-R1-HOM1),

• (rir-S1-R3-HOM3, rir-S2-R3-HOM3),

• (rir-S1-R5-HOM5, rir-S2-R5-HOM5),

where each pair is assigned to channel j = 1, 2, 3 of the target
multichannel RIR, respectively. The latter does not undergo fur-
ther trimming since the signals are already provided with a length
in seconds comparable to the T60.

4.1. Baseline

As for the SISO case [19], to the best of our knowledge, there
are no methods in the literature that can be directly compared to
ours for learning all the parameters of a MIMO FDN. However,
in [3], a genetic algorithm is used to optimize some parameters of
a SIMO FDN with the aim of matching a simulated BRIR. More-
over, we used the genetic algorithm (GA) introduced in [16] as
one of the baselines for the method presented in [19] to optimize a
SISO FDN. Thus, we decide to select and adapt to the MIMO case
the method employed in [16] since deemed to be a suitable method
of the literature for drawing a comparison.

In this work, we implement the GA algorithm of [16] with
N = 16, a population of 50 individuals, and a number of gen-
erations equal to 50 in order to improve the output of the opti-
mization. The individuals are, therefore, MIMO FDNs charac-
terized by N(1 + K + J) + KJ mutable parameters, which, in
turn, determine m, B, C, and D; the feedback matrix is not af-
fected by the algorithm and is set at the beginning of the optimiza-
tion equal to a random orthogonal matrix. Scalar gains are con-
strained to take value in the range [−1, 1], whereas delays in the
range [0.0002, 0.064] s. At each iteration, the attenuation filters
are updated according to m and the target octave-band reverber-
ation times [11]. We consider two fitness functions: (i) the first,
proposed in [16], which is the mean absolute error between the
MFCCs of the target multichannel RIR and the MIMO FDN out-
put; (ii) the second, which is the same cost function considered in
this work for optimizing the proposed differentiable MIMO FDN.
It is worth pointing out that not all the parameters of the FDN con-
sidered in [16] are frequency-independent given that attenuation
and tone-control filters are inserted in the processing pipeline, as
well as graphic equalizers. Ultimately, this gives the FDN associ-
ated to the GA method a higher descriptive power with respect to
our frequency-independent FDN. However, as we will show in the
next subsections, this does not prevent the method to minimize the
loss function in (11) with optimal results.

Finally, the baseline is implemented in MATLAB starting from
the authors’ codebase, which exploits the Feedback Delay Net-
work Toolbox (FDNTB) [24], and we make use of MATLAB’s
Global Optimization Toolbox for finding m, B, C, and D.

4.2. Binaural RIR

As a first example, we consider the BRIR with K = 1 input and
J = 2 outputs (i.e., SIMO case) referenced at the beginning of this
section. The FDN is trained with λ = 0.5 and, after 686 iterations,
reaches the best model with an overall loss L = 0.0105, two or-
ders of magnitude less than the loss at iteration 0; this was obtained
with the FDN randomly initialized as explained in Sec. 3.4.

Fig. 3 shows the EDCs of the BRIR (“Target”) marked with
a solid black line, the IRs obtained by means of our approach
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Figure 3: EDC of the considered BRIR after 686 iterations.

0.0 0.1 0.2 0.3 0.4
Time [s]

(a)

0.5

1.0

1.5

E
D

P
-

C
h

1

Target

Baseline

Ours

0.0 0.1 0.2 0.3 0.4
Time [s]

(b)

0.5

1.0

1.5

E
D

P
-

C
h

2

Target

Baseline

Ours

Figure 4: EDP of the considered BRIR after 686 iterations.

(“Ours”), with dashed orange line, the baseline optimized consid-
ering the MFCC fitness function of [16] (“Baseline - MFCC”),
with solid pink line, and the baseline optimized considering our
fitness function (“Baseline”), marked with solid blue line; such
a color convention will be used for all the plots analyzed in this
section. First, we can state that the two different baselines are
comparable as far as EDC is concerned, which leads to saying that
the performance of the genetic algorithm does not depend much
on which of the two fitness functions is considered. We performed
further tests with other RIRs and they all led to the same result.
Hence, from now on we will only consider the baseline optimized
by means of (11) in order to provide a fair comparison with our
method. Anyway, it is evident that our approach is able to bet-
ter delineate the decay curve for both the two channels. This is
confirmed looking at Figs. 5, where the IRs are compared to the
target RIRs. In particular, the results of our approach are shown in
Figs. 5(a) and (b), while those of the baseline method are shown in
Figs. 5(c) and (d). The latter present peaks that are outside the tar-
get RIR envelope due to a wrong echo density. This is confirmed
by looking at Fig. 4, where the EDPs are depicted. The orange
curve nicely follows the black curve until the Tmax

60 = 0.316 s
since, we remind, we trained only for such a time span. The better
agreement between the orange curve and the black curve in Fig. 4
is what makes the IR obtained with our approach closer to the tar-
get BRIR in Fig. 5. This, in turn, confirms the outcome of the ab-
lation study presented in [19], corroborating the thesis that, for the
proposed approach, the regularization term in (10) is instrumental
for improving the matching between IRs and target RIRs.

Table 1 shows the reverberation times T20 and T60 and the
errors ∆T20 and ∆T60 of the target RIR, the baseline IR, and our
IR. The proposed approach performs better than the baseline for
both channel 1 and 2, with an error ∆T20 of 2.2 ms and 19.3 ms,

Table 1: Reverberation times for the considered BRIR.

T20 [s] ∆T20 [s] T60 [s] ∆T60 [s]

Target Ch 1 0.3156 — 0.4449 —
Ch 2 0.2963 — 0.4442 —

Baseline Ch 1 0.3308 0.0152 0.3578 0.0871
Ch 2 0.3270 0.0307 0.3558 0.0885

Ours Ch 1 0.3178 0.0022 0.4372 0.0077
Ch 2 0.3156 0.0193 0.4364 0.0079

an error ∆T60 of 7.7 ms and 7.9 ms, respectively. In general, our
approach led to errors one order of magnitude less than those of
the baseline method, further demonstrating the good performance
of the methodology.

4.3. Multichannel RIR

Let us now consider the HOMULA-RIR dataset and the multi-
channel RIR with K = 2 inputs and J = 3 outputs (i.e., MIMO
case) obtained as mentioned above. The MIMO FDN is trained
once again with λ = 0.5 and yields the best model after 776 itera-
tions with a loss L = 0.0025, three orders of magnitude less than
the loss at iteration 0.

Fig. 6 shows the EDC of baseline and our IRs together with
that of the target multichannel RIR. We can clearly spot that our
method is able to learn the decay for each channel j, especially
in the first 0.5 s, i.e., where most of the reflections happen to be.
This can be evinced by looking at Figs. 7(a), (b), and (c), where
the multichannel IR obtained by means of our approach is directly
compared to the given RIR. It is worth pointing out once again the
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Figure 5: IRs of the MIMO FDN approximating the considered BRIR optimized with the proposed approach (a), (b) and the baseline
approach (c), (d).

regularization brought by the EDP loss term that nicely makes the
IR envelopes to match, which, unfortunately, due to constrained
space we are not able to show. On the other hand, the baseline
method is not able to jointly optimize the MIMO FDN parameters
such that each channel decay curve matches the target. This is
further corroborated by the results reported in Figs. 7(d), (e), and
(f), where the IRs obtained with the baseline method are far from
the desired goal. Finally, it is worth stressing that this happens
despite the higher modeling capability of the FDN implemented in
the baseline method, making our approach even more effective.

As far as the reverberation times reported in Table 2 are con-
cerned, we can clearly state that once again the proposed approach
is characterized by the lowest errors. In particular, we obtain an
error ∆T20 of 23 ms, 9.2 ms, and 25.1 ms, and an error ∆T60 of
6.3 ms, 2.1 ms, and 17.1 ms, for channel j = 1, j = 2, and j = 3,
respectively. Moreover, by looking at the baseline T20 values we
can state that, at least in the first milliseconds, the optimization
driven by the genetic algorithm is not able to grasp the fine differ-
ence between the channels, whereas our approach does, showing
its potential capability to model the little nuances that exist among
channels.

5. CONCLUSIONS

In this article, we proposed for the first time a differentiable MIMO
Feedback Delay Network (FDN) for multichannel room acous-
tics simulation. Starting from previous work on SISO FDNs, we
provided a reparametrization of the frequency-independent MIMO
FDN that allowed us to learn all the parameters through automatic
differentiation, with the aim of jointly modeling and rendering a
given multichannel RIR. We did this by minimizing a perceptually-

Table 2: Reverberation times for the considered multichannel RIR.

T20 [s] ∆T20 [s] T60 [s] ∆T60 [s]

Target Ch 1 0.7982 — 0.9302 —
Ch 2 0.8047 — 0.9244 —
Ch 3 0.8469 — 0.8969 —

Baseline Ch 1 0.9246 0.1264 0.8727 0.0576
Ch 2 0.9246 0.1198 0.8662 0.0581
Ch 3 0.9246 0.0776 0.8574 0.0395

Ours Ch 1 0.7746 0.0236 0.9366 0.0063
Ch 2 0.7956 0.0092 0.9265 0.0021
Ch 3 0.8218 0.0251 0.9139 0.0171

informed loss function that takes into account both the energy de-
cay curve and the echo density profile. We evaluated our approach
on items taken from two distinct datasets, tackling, in particular,
the case of binaural RIR and multichannel RIR modeling. We
showed that the proposed approach is able to overcome the se-
lected baseline, i.e., a method for the FDN optimization via ge-
netic algorithm, proving it to be suitable for jointly render IRs that
match the considered perceptual characteristics of the target RIRs
and paving the way towards efficient and lightweight algorithms
for real-time multichannel acoustics simulation.

Future work may entail the extension of the proposed method
to frequency-dependent MIMO FDNs for matching time-frequency
decays, to MIMO FDNs characterized by a higher number of in-
puts/outputs, and the use of interpolative and/or regression tech-
niques with the aim of obtaining the IRs in points in space that are
not taken into account by the target multichannel RIR.
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Figure 6: EDC of the considered multichannel RIR after 776 iterations.

Figure 7: IRs of the MIMO FDN approximating the considered multichannel RIR optimized with the proposed approach (a), (b), (c) and
the baseline approach (d), (e), (f).
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