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ABSTRACT

Differentiable machine learning techniques have recently proved
effective for finding the parameters of Feedback Delay Networks
(FDNs) so that their output matches desired perceptual qualities
of target room impulse responses. However, we show that ex-
isting methods tend to fail at modeling the frequency-dependent
behavior of sound energy decay that characterizes real-world en-
vironments unless properly trained. In this paper, we introduce a
novel perceptual loss function based on the mel-scale energy de-
cay relief, which generalizes the well-known time-domain energy
decay curve to multiple frequency bands. We also augment the
prototype FDN by incorporating differentiable wideband attenua-
tion and output filters, and train them via backpropagation along
with the other model parameters. The proposed approach improves
upon existing strategies for designing and training differentiable
FDNs, making it more suitable for audio processing applications
where realistic and controllable artificial reverberation is desirable,
such as gaming, music production, and virtual reality.

1. INTRODUCTION

Feedback Delay Networks (FDNs) represent a versatile class of
digital audio processing algorithms renowned for their applica-
tions in artificial reverberation. Originally proposed by Gerzon [1],
FDNs are recursive filters featuring a bank of N absorbing delay
lines whose outputs are mixed and fed back by a scalar feedback
matrix. This way, FDNs can parsimoniously model the physi-
cal process of traveling sound waves being repeatedly reflected
at the room boundaries, which ultimately results in acoustic re-
verberation. As such, delay-network models constitute an effi-
cient alternative to the general representation of a room impulse
response (RIR) as a finite impulse response (FIR) filter [2]. In
fact, despite recent partitioned schemes [3], convolution still has
a computational load incompatible with certain real-time applica-
tions, such as those pertaining virtual reality [4] and gaming [5].

In the past few years, significant efforts have been directed
toward determining the optimal set of FDN parameters. Various
strategies have been employed to address this challenge, with some
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Figure 1: General FDN (N = 3).

Figure 2: Modified FDN (N = 3).

adopting an analytical approach and designing the FDN so as to
obtain certain desired acoustical characteristics, such as a target
reverberation time [6, 7] and echo density [8, 9]. Others leverage
optimization methods to adjust the parameters of a delay-network
model in order to fit a target RIR, with genetic algorithms being
the most common approach [10–14].

Largely unaffected by the well-known limitations of gradient-
free methods, differentiable machine learning techniques have also
been recently introduced in the realm of FDN optimization. Lee et
al. [15] estimate the parameters of a differentiable delay-network
model using a convolutional-recurrent neural network trained in an
end-to-end fashion. Dal Santo et al. [16, 17] recently proposed to
optimize the model parameters directly within the digital structure
of a differentiable FDN as a means to achieve colorless reverbera-
tion, i.e., having a flat magnitude response. However, [15] merely
considers the artificial reverberator as a building block of the loss
function, whereas [16, 17] define the loss function based solely
on the characteristics of the FDN without targeting any real-world
RIR, effectively resulting in a reference-free optimization scheme.

In a recent work [18], we proposed using automatic differen-
tiation to find the parameters of an FDN so that its output matches
some perceptual qualities of a target RIR. However, [18] considers
a prototype FDN where gains and damping are modeled by instan-
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taneous multiplications with learnable scalars. All FDN parame-
ters are, therefore, frequency-independent,1 and are optimized as
so to minimize a likewise frequency-independent loss function. In
this paper, we show that such an approach, although capable of ac-
curately capturing the overall energy decay of the target RIR, fails
to model the frequency-domain behavior that instead characterizes
real-world room acoustics. Thus, we improve the training objec-
tive proposed in [18] by incorporating a frequency-dependent loss
term based on the mel-scale energy decay relief (EDR) [20]. Fur-
thermore, we extend the differentiable FDN prototype by includ-
ing trainable finite impulse response (FIR) filters, and learn their
taps along with the other FDN parameters. The proposed FDNs
are shown to enhance the behavior of the energy decay at different
frequencies compared to the state of the art.

2. FEEDBACK DELAY NETWORKS

Formalized by Stautner and Puckette [21], the single-input single-
output (SISO) FDN shown in Figure 1 is characterized by [22]

y[n] = cTs[n] + du[n]
s[n+m] = A s[n] + bu[n],

(1)

where u[n] is the input signal, y[n] is the output signal, b ∈ RN is
a vector of input gains, c ∈ RN is a vector of output gains, (·)T in-
dicates the transpose operator, A ∈ RN×N is the feedback matrix,
d ∈ R is the direct sound gain, and s[n] ∈ RN contains the delay
lines output at time index n. The lengths of the delay lines ex-
pressed in (fractional) samples are denoted by m = [m1, ...,mN ],
while s[n+m] := [s1[n+m1], ..., sN [n+mN ]]T.

If m = 1N , (1) corresponds to the measurement and state
equations of a state-space model, and s[n] holds the state variables
of the system at time n [22]. The delays, however, are commonly
chosen to be co-prime integers to maximize echo density [9].

The feedback matrix A is often chosen to have unimodular
eigenvalues and linearly independent eigenvectors [22]. This, how-
ever, is not enough to ensure that all the system poles of the re-
sulting FDN lie on the unit circle [23]. A feedback matrix that
guarantees critical stability regardless of the choice of delays m
is said to be unilossless [23]. Notably, any orthogonal matrix is
unilossless [23]. As such, Hadamard, Householder, and circulant
matrices are widely used [19].

Starting from such a prototype, losses are then incorporated
by multiplying A by a diagonal matrix of scalars designed to pro-
duce a specified reverberation time [16]. Alternatively, another
classic approach is to extend every delay line with an attenuation
filter [24]. Likewise, a tone correction filter can also be placed
at the output of the FDN [24]. Different approaches for design-
ing attenuation filters have been proposed in the literature. Exist-
ing designs include high-order octave-bands infinite impulse re-
sponse (IIR) filters [25,26], graphic equalizers [6,7,27] and, more
recently, two-stage filter structures [28]. Nevertheless, the optimal
design of wideband attenuation filters based on a measured RIR
remains an open challenge.

In the next section, we introduce a novel differentiable FDN
architecture capable of capturing the frequency-dependent energy
decay behavior of real-life acoustic environments thanks in part to

1It is worth emphasizing that, although its parameters may indeed be
frequency-independent, the FDN as a whole, belonging to a general class
of recursive filters [19], is not.

the inclusion of learnable attenuation and output filters. Since ev-
ery operation of the proposed FDN is differentiable, we are able
to train its parameters via backpropagation, including filter coeffi-
cients, delay line lengths, scalar gains, and the feedback matrix.

3. DIFFERENTIABLE FEEDBACK DELAY NETWORKS

In [18], we showed that it is possible to optimize a differentiable
implementation of the SISO FDN shown in Figure 1. In the present
work, we focus on the prototype FDN depicted in Figure 2, which
augments the N delay lines with N absorbent filters, Hi(z), i =
1, ..., N , and features a tone correction filter, T (z).2

In [24], Jot and Chaigne refer to the former as general delay
network, and to the latter as modified general delay network. In
the following, for the sake of clarity, we will use the same naming
convention and call “general FDN” the one depicted in Figure 1,
and “modified FDN” the one in Figure 2. In the next subsection,
we will review the differentiable implementation of the general
FDN presented in [18]. Sections 3.2 through 3.4 will then discuss
the novelties of the proposed method.

3.1. Differentiable General FDNs

A general FDN can be implemented in such a way that it allows
learning A ∈ RN×N , b ∈ RN

≥0, c ∈ RN
≥0, m ∈ RN

≥0, d ∈ R≥0

via standard backpropagation [18]. In the following, we analyze
each component of the differentiable general FDN one at a time.

Feedback matrix: Instead of learning the feedback matrix
under unilosslessness constraints, we define an unconstrained real-
valued matrix W ∈ RN×N and parameterize the lossy feedback
matrix as A = UΓ, where U ∈ RN×N is an orthogonal matrix,
and Γ ∈ RN×N

[0,1) is a learnable diagonal attenuation matrix. The
matrix exponential maps skew-symmetric matrices onto orthogo-
nal matrices [30]. Hence, we apply the following [16]

U = exp
(
WTr −WT

Tr

)
, (2)

where WTr is the upper triangular part of the unconstrained learn-
able matrix W. As such, the argument of the matrix exponential
exp(·) is skew-symmetric by construction, and U is orthogonal,
and thus unilossless, regardless of the values of W. In turn, this
implies that losses are entirely modeled by Γ.

Differentiable reparameterization: Given N unconstrained
real-valued scalars in γ = [γ1, ..., γN ]T, the attenuation matrix is
defined as [18]

Γ = diag(g(γ1), ..., g(γN )) , (3)

where g : R → (0, 1) is the logistic function g(x) = 1
1+e−x .

Here, g is used to reparameterize γ so as to yield attenuation coef-
ficients that take values in the codomain of said function.

Similarly, we use f(x) = |x| to map d and the entries of b,
c, and m onto R≥0. Akin to activation functions such as ReLU, f
is differentiable almost everywhere. Hence, the gradients can flow
up to the unconstrained learnable parameters, while we can use the
output of g and f in every computation concerning the FDN.

Differentiable delay lines: We implement the delay lines in
the frequency domain by evaluating their response on the unit cir-
cle at discrete frequency points. This is achieved by endowing each

2Extending the present study to differentiable MIMO FDNs [29] is left
for future work.
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delay line with a circular buffer collecting past samples. Thus, at
each time step, we zero-pad the signal currently stored in the ith
buffer, compute the Fast Fourier Transform (FFT), multiply the re-
sulting spectrum by a conjugate symmetric fractional delay filter
response, and go back to the time domain by computing the inverse
FFT. This operation is carried out in parallel for i = 1, ..., N . For
more details, we refer the reader to [18].

3.2. Differentiable Modified FDNs

A differentiable modified FDN allows us to learn the parameters of
a general FDN plus the filter taps of Hi(z) and T (z). In practice,
b, c, m, and d are all parameterized as described in Section 3.1.
The feedback matrix, instead, is given by A = U. Indeed, a
modified FDN may forego the attenuation matrix Γ as its role is
taken upon by the attenuation filters Hi(z), i = 1, ..., N .

We implementHi(z), i = 1, ..., N , as time-domain FIR filters
with p taps. Namely, we implement the entire attenuation filter-
bank as a single depthwise convolutional layer with kernel size p.
By using a neural network block in lieu of alternative filtering im-
plementations, the gradients of the loss function can efficiently
flow through the convolutions, and we can train the kernel taps via
standard backpropagation along with the other FDN parameters.

Depthwise convolutions here refer to a grouped 1D convolu-
tional layer with N kernels and N groups. The output of each
delay line is thus considered as a channel of the unbatched in-
put tensor. Each channel is then processed by a dedicated kernel.
By setting the number of groups equal to N , indeed, all cross-
connections from input to output channels are blocked, and a ded-
icated FIR filter is applied to the output of each delay line inde-
pendently of the others. In our implementation, the convolutional
layers have no bias and no activation function. In principle, FIR
filtering may be achieved with unit stride. In practice, however, the
attenuation filters rely on p-sample circular buffers storing the out-
put of each delay line. The input tensor is thus of size N × p and
kernels have no stride. The ensuing filtering process is depicted in
Figure 3.

Analogously, we implement T (z) as a single-kernel 1D con-
volutional layer with no bias and activation.

In this work, we use FIR filters with p = 63 taps. Commonly,
IIR filters are preferred as they require less taps compared to their
FIR counterparts. However, updating the coefficients of an IIR
filter via gradient descent may lead to instability problems during
training. In contrast, FIR filters are always stable regardless of the
values that taps may take on after each gradient update step.

3.3. Learning Objective

Frequency-independent objective: [18] introduced a composite
loss function comprising two error terms: one for the energy decay
curve (EDC) and one for the echo density profile (EDP).

Given aLh-sample IR, h[n], the EDC is defined via Schroeder’s
backward integration as [31]

ε[n] =

Lh∑
τ=n

h2[τ ], (4)

and the corresponding L2-loss term is given by

LEDC =

∑
n (ε[n]− ε̂[n])2∑

n ε[n]
2

, (5)

Figure 3: FIR filtering via depthwise convolutions; ⊙ denotes the
dot product between each input channel, i.e., a p-sample circular
buffer storing the output of the corresponding delay line, and a
dedicated p-tap kernel.

where ε̂[n] =
∑Lh

τ=n ĥ
2[τ ] is the EDC of the predicted IR, ĥ[n].

In [18], we introduced a regularization term, which we called
Soft EDP, with the aim of better conditioning the IR’s echo den-
sity. The Soft EDP, denoted by ηκ[n], is a differentiable approxi-
mation of the normalized echo density profile introduced by Abel
and Huang [32]. We define the Soft EDP as [18]

ηκ[n] =
1

erfc(1/
√
2)

n+ν∑
τ=n−ν

w[τ ]gκ(|h[τ ]| − σn) , (6)

where w[τ ] is a (2ν + 1)-sample tapered window s.t.
∑

τ w[τ ] =
1, erfc(·) is the complementary error function, gκ(x) := g(κx)
indicates the κ-scaled logistic function, κ≫ 1, and σn is the stan-
dard deviation of the IR taps falling within the window centered
at time index n. Contrary to the classic formulation [32], (6) is
differentiable. Therefore, we can use the following loss term to
regularize the echo density of the produced IR [18]

LEDP =
1

Lh

∑
n

(ηκ[n]− η̂κ[n])
2 , (7)

where η̂κ[n] is the Soft EDP of the predicted IR.
Combining the two terms, we obtain the following frequency-

independent (FI) loss function [18]

LFI = LEDC + λLEDP , (8)

where λ ∈ R>0 is a positive hyperparameter.
Frequency-dependent objective: Frequency-dependent cost

functions have been previously proposed for gradient-free auto-
matic parameter tuning methods, based on, e.g., MFCCs [10, 14]
and log-amplitude mel-spectrograms [33]. Likewise, [15] uses a
multi-resolution spectral L1-loss to train a neural network param-
eter estimator via backpropagation.

In this work, we introduce a new frequency-dependent loss
term acting on the mel-scale energy decay relief (EDR). The EDR
is typically defined via the backward integration of |H[ω,m]|2,
i.e., the squared magnitude of the short-time Fourier transform
(STFT) of h[n]. Here, instead, we evaluate the EDR by integrat-
ing the mel-frequency spectrogram Hmel[k,m] to account for the
nonlinear human perception of sound [34]. Namely, the mel-scale
EDR is defined as

RdB
mel[k,m] = 10 log10

M∑
τ=m

|Hmel[k, τ ]|2, (9)

where Hmel[k,m] is obtained by filtering the 512-bin magnitude
STFT of h[n] with 64 triangular mel filters. The STFT is computed
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using a 320-sample Hann window (20 ms) with hopsize of 160
samples (10 ms). We define the corresponding L1-loss term as

LEDR =

∑
k

∑
m

∣∣∣RdB
mel[k,m]− R̂dB

mel[k,m]
∣∣∣∑

k

∑
m |RdB

mel[k,m]|
, (10)

where RdB
mel[k,m] is the mel-EDR of the measured RIR in dB, and

R̂dB
mel[k,m] is that of the IR of the optimized FDN.

The frequency-dependent (FD) training objective is obtained
by linearly combining the EDC, EDR, and EDP terms, i.e.,

LFD = λ1LEDC + λ2LEDR + λ3LEDP, (11)

where λ1, λ2, λ3 ∈ R>0.
The EDR generalizes the EDC to multiple frequency bands.

Nonetheless, we argue that LEDC and LEDR are complementary
rather than redundant. First, LEDC has the same temporal reso-
lution of the target IR, whereas LEDR, being defined in the time-
frequency domain, has a coarser temporal resolution determined
by the window stride. Second, we evaluate LEDC on a linear scale,
placing the focus on the first portion of the IRs, while LEDR is
defined on a dB scale, emphasizing errors in the reverberation tail
due to the logarithmic compression. Notably, this approach is rem-
iniscent of the well-established practice of combining linear-scale
L2-losses and log-scale L1-losses that has been found beneficial
in many audio signal processing tasks [35–38].

RIR length at training time: At training time, both (8) and
(11) are evaluated limitedly to the span of time below the T60 of
the target RIR [18]. In other words, Lh is trimmed to ⌈T60fs⌉.
Beyond that point, the residual energy of the target RIR is arguably
negligible. Retaining such a late portion of the RIR would in fact
overemphasize the contribution of the noise floor. This, in turn,
could end up interfering with the learning process of the FDN,
which, instead, exhibits a noiseless IR.

3.4. Learning Rates

We train every FDN model considered in the present study for a
maximum of 650 iterations as follows. For general FDNs, we use
a single Adam optimizer with learning rate of 0.1, acting on W, γ,
b, c, m, and d. As far as modified FDNs are concerned, instead,
we follow [39] and invoke two Adam optimizers with different
learning rates. The first acts on W, b, c, m, and d with a learning
rate of 0.1. The second acts on the taps of the attenuation and
output filters, and has a learning rate of 0.001. In both cases, we
set β1 = 0.9, β2 = 0.999, and apply no weight decay.

3.5. Parameter Initialization

We initialize the differentiable FDNs with no prior knowledge of
the target RIRs.

Scalar parameters: As in [18], we let b(0) ∼ N (0, 1
N
IN ),

c(0) = 1
N
1N , and d (0) = 1, where 1N is a vector of N ones,

and IN is the N × N identity matrix. We initialize W(0) so that
W(0)

ij ∼ N (0, 1
N
). We initialize m̃(0) so that m̃(0)

i = ψm̃⋆
i with

m̃⋆
i ∼ Beta(α, β), for i = 1, ..., N , where α ≥ 1 and β > α. We

set ψ = 1024, α = 1.1, and β = 6, such that, at fs = 16 kHz, we
ensure a maximum possible delay of 64 ms and a mean value of
about 10 ms. We let the scaling term in (6) increase linearly from
102 to 105 as n = 0, ..., Lh − 1.

FIR filters: The p-sample buffers of each delay line are ini-
tialized with zeros. The kernels of the depthwise convolutional

Figure 4: Test case 1: Time-domain EDC (4) in dB.

Figure 5: Test case 2: Time-domain EDC (4) in dB.

layers are initialized with a scaled Kronecker delta γ(0)

i δ[n], where
γ(0)

i = 0.9, i = 1, ..., N . Hence, at the very first iteration, the at-
tenuation in feedback loop is equivalent to what one would obtain
by using Γ = diag(γ(0)

1 , ..., γ(0)

N ). Notice that, despite the name,
convolutional layers cross-correlate input and kernels rather than
performing a direct convolution. Contrarily to cross-correlation,
in fact, direct convolution entails one of the functions to be time-
reversed, i.e., reflected about the y-axis. Here, we model such a re-
flection by populating the circular buffers starting from the zeroth
index, shifting the elements in a clockwise direction, and fixing the
writing head location. For this reason, we initialize convolutional
kernels without time-reversing their taps.

4. EVALUATION

We consider two RIRs measured in real-life acoustic environments
taken from the 2016 MIT Acoustical Reverberation Scene Statis-
tics Survey corpus [40]. The dataset contains 271 single-channel
environmental IRs of both open and closed spaces, with reverber-
ation times ranging from 0.06 s to 1.99 s.

The first RIR, which we refer to as test case 1, was recorded
in a hallway (T60 ≈ 0.6 s) and has ID h270. The second RIR,
which we refer to as test case 2, was recorded in a conference
room (T60 ≈ 1.42 s) and has ID h060.

For each test case, we train the general FDN described in Sec-
tion 3.1 using the frequency-independent loss LFI given in (8) and
the proposed frequency-dependent loss LFD given in (11). Addi-
tionally, we train the modified FDN presented in Section 3.2 using
LFD as learning objective. We set N = 6, λ = 0.1 in (8), and
λ1 = 0.5, λ2 = 1, and λ3 = 0.1 in (11).
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(a) Target RIR (h270) (b) General FDN trained with LFI (c) General FDN trained with LFD (d) Modified FDN trained with LFD

Figure 6: Test case 1: Mel-scale energy decay relief (EDR) in dB.

(a) Target RIR (h060) (b) General FDN trained with LFI (c) General FDN trained with LFD (d) Modified FDN trained with LFD

Figure 7: Test case 2: Mel-scale energy decay relief (EDR) in dB.

4.1. Results and Discussion

Figures 4 and 5 show the time-domain EDCs, ε[n], expressed in
dB, for test case 1 and test case 2, respectively. Figures 6 and 7
depict the corresponding mel-scale EDRs. In particular, Figures
6a and 7a report the EDR of the target RIRs; Figures 6b and 7b
show the EDR of the general FDNs trained using LFI; Figures 6c
and 7c show the EDR of the general FDNs trained using LFD; Fig-
ures 6d and 7d show the EDRs of the proposed modified FDN.
Furthermore, we report the EDCs of eight frequency bands cor-
responding to the center frequencies of the considered mel filters.
Namely, we evaluate the EDCs at 58 Hz, 121 Hz, 264 Hz, 525 Hz,
988 Hz, 2027 Hz, 4075 Hz, and 7659 Hz. Figures 8 and 12 de-
pict the EDCs of the baseline FDN. Figures 9 and 13 show the
EDCs of the general FDN trained with the proposed frequency-
dependent loss function. Figures 10 and 14 report the EDCs of
the proposed modified FDN. For completeness, Figure 11 and 15
show the learned magnitude response of Hi(z), i = 1, ..., N , and
T (z) pertaining to test case 1 and test case 2, respectively.

Figures 4 and 5 show that differentiable FDNs are able to ac-
curately render the total energy decay of the target RIRs. However,
Figures 6b and 7b reveal that the proposed loss function, LFD, is
essential to capture the frequency-dependent behavior shown in
Figures 6a and 7a, where low and high frequencies decay at notice-
ably different rates. Indeed, in both test cases, the general FDNs
trained with LFI yield a mel-EDR that is far from the target one.
Ultimately, in fact, LEDC and LEDP do not inherently encourage the
FDN to be aware of the desired energy spectral density.

Conversely, the differentiable FDNs trained with LFD appear
to produce an overall better energy decay. In particular, the gen-
eral FDN trained with LFD clearly outperforms the one trained
with LFI, despite having the same architecture. This suggests that
choosing the right learning objective is paramount in achieving the
desired acoustical properties when training a differentiable FDN.

Whereas more closely resembling the target EDR, however,
Figures 6c and 7c show two major drawbacks of general FDNs.
First, the EDRs indicate a prominent comb-like frequency response,
with several mel bands having noticeably less energy than the neigh-

boring ones; this is a well-known problem affecting artificial rever-
berators employing delay loops, which, in turn, results in metallic
sounding artifacts [41]. Second, we draw attention to the errors
present in the high frequency range, where the energy appears to
decay at a significantly lower rate than in the target EDR. The mis-
match is particularly noticeable in Figures 9 and 13.

The proposed differentiable modified FDN improves both as-
pects. This is evidenced by Figures 10 and 14 where modified
FDNs achieve good match at all test frequencies. Also, includ-
ing the learned FIR filters appears to mitigate the comb effect in
Figures 6d and 7d to some extent. This suggests that jointly us-
ing differentiable modified FDNs and the proposed loss function
is beneficial when it comes to learning the frequency-dependent
sound energy decay of real-life acoustic environments.

5. CONCLUSIONS

In this paper, we have showed that, unless explicitly regularized,
current methods for training differentiable FDNs to match a tar-
get room impulse response fail to capture the frequency-dependent
behavior of sound energy decay observed in real-life room acous-
tics. We thus proposed a novel loss function accounting for the
mel-scale energy decay relief, along with a novel prototype FDN
featuring differentiable attenuation and output filters. The pro-
posed loss function proves crucial in rendering different decay
rates across frequencies, while the integration of learnable FIR fil-
ters improves upon using a prototype FDN where delay line atten-
uation is modeled by scalar parameters.
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