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ABSTRACT

Frequency-modulated (FM) sinusoids are commonly used to model
signals in several engineering applications, such as radar, sonar,
communications, acoustics, and optics. The estimation of the pa-
rameters of FM sinusoids is a challenging problem with a long his-
tory in the literature. In this article, we use the distribution deriva-
tive method (DDM) to estimate the parameters of FM sinusoids
in additive white Gaussian noise. Firstly, we derive the estima-
tion of parameters of the model with DDM. Then, we compare the
results of Monte-Carlo simulations (MCS) of DDM estimation of
FM signals in additive white Gaussian noise against the state of
the art (SOTA) and the Cramér-Rao lower bound (CRLB). DDM
estimation of FM sinusoids showed performance comparable to
the SOTA with less estimation bias. Additionally, DDM estima-
tion of FM sinusoids is simple and straightforward to implement
with the fast Fourier transform (FFT) relative to other approaches
in the literature. Finally, DDM estimation has effectively the same
computational complexity as the FFT.

1. INTRODUCTION

Nonstationary signals are ubiquitous in several applications, such
as radar, sonar, communications, optics, acoustics, and audio pro-
cessing. In this article, we are interested in a specific class of non-
stationary signals commonly called frequency-modulated (FM) si-
nusoid, which can be expressed as

x (t) = exp{ao +j (bo + b1t + b2 cos (wot — ¢0))}, (1)
where ay is the constant log amplitude, bo is the initial phase of
the carrier, by is the carrier angular frequency, b2 is the modu-
lation index, wq is the modulation angular frequency, and ¢q is
the initial phase of the modulation. We want to estimate all the
parameters of z (¢) in (1) from a finite number of noisy observa-
tions. In audio processing, the signal in (1) can be used to model
the classic FM synthesis [1] as well as vibrato [2, 3, 4]. As such,
the estimation of the parameters of x (¢) in (1) has applications
in the retrieval of FM synthesis parameters from audio [5, 6] as
well as vibrato detection and modeling [2, 3, 4]. In the signal
processing literature, the signal in (1) is also called hybrid FM-
polynomial phase [7, 8, 9, 10], and they appear in applications
such as micro-Doppler scattering [11, 12] and precession period
estimation [13, 14], among others. As such, the estimation of pa-
rameters of FM sinusoids is of great interest.

Copyright: © 2024 Marcelo Caetano et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

322

Parametric estimation methods typically use an underlying sig-
nal model for both the time-varying amplitudes and phases. For
example, given the general model for an AM-FM sinusoid

z(t) = exp{A(t) +j @ (1)} = exp{L (1)},

where A (t) is the instantaneous log-amplitude and ® () is the in-
stantaneous phase. The signal z (¢) in (2) is called an AM-FM
sinusoid because the amplitude is modulated by A (¢) and the fre-
quency by the first time derivative of ® (¢). Assuming that the
same underlying model can represent the nonstationary character-
istics of both A (¢) and ® (¢), we write L (¢) in (2) as

(@)

Q
L(t) =) agpq(t), 3)

where og = aq+7 by € C, Q is the model order, and the functions
pq (t) are linearly independent [15]. Replacing (3) in (2) yields the
general parametric model for an AM-FM sinusoid

Q
2 (1) = exp {Zaqpq (t)},

which can represent a broad class of signals that are typically clas-
sified according to the phase. For example, pq (t) = t?, ¢ € N
gives a polynomial phase signal (PPS) [16, 17, 15], where the
order () determines linear phase (i.e., stationary) for Q@ = 1,
quadratic phase (i.e., chirp) for Q = 2, cubic phase for Q = 3,
etc. When @ = 1 and p, (¢t) = sin (wt — ¢), we have a sinu-
soidal phase signal [7, 18, 19, 11, 12, 13, 20, 14, 21, 22], whereas
pq (t) = In (t) gives a hyperbolic phase signal [7]. Hybrid phase
models are also found in the literature, most commonly hybrid
polynomial-sinusoidal phase [23, 7, 10, 24, 8, 9, 25] but also hy-
brid polynomial-hyperbolic phase [7]. Note that the FM-sinusoid
of (1) is a special case of hybrid polynomial-sinusoidal phase ob-
tained when Q = 2, p; = t? forq = 0 and ¢ = 1, and pq
cos (wot — ¢po) for ¢ = 2 and also a1 = a2 = 0.

The estimation of the parameters of (1) is a very challeng-
ing problem [5, 6, 23, 7, 25, 8, 8, 24, 9, 10] and most proposed
solutions found in the literature require complex estimation pro-
cedures with high computational complexity to achieve accept-
able performance comparable to maximum likelihood estimation
(MLE). MLE is known to asymptotically achieve the Cramér-Rao
lower bound (CRLB), but MLE of (1) requires a search procedure
in a high-dimensional search space, where the number of param-
eters determines the dimensionality. So MLE of the parameters
of (1) is possible, but it requires computationally demanding non-
linear optimization, which tends to converge to local optima [7] in
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high-dimensional spaces. Consequently, much research effort has
been applied to develop estimation methods that approximate the
CRLB at a lower computational cost.

In the literature, we find estimation methods using Kalman fil-
tering [5, 6], variations of the high-order ambiguity function [23,
71, and other techniques such as subspace-based estimation [25]
or the Radon transform [8]. Techniques based on phase unwrap-
ping [24, 10] achieve quasi-maximum likelihood (QML) perfor-
mance via refinement stages. In [10], the parameters of the cou-
pled FM signal model are estimated in three stages, stage 1 gives
a rough approximation, stage 2 yields a refined estimation, and
stage 3 uses a nonlinear optimization procedure initialized with
the estimation from stage 2, which is biased but close enough to
the optimum, to approximate the performance of MLE towards the
CRLB. Therefore, [10] is considered to be the state of the art be-
cause stage 3 achieves QML performance.

In this work, we present how to use the distribution derivative
method [15] (DDM) to estimate all the parameters of (1). DDM
provides efficient estimation with a relatively straightforward im-
plementation and low computational complexity for polynomial
phase signals (PPS) of arbitrary order [15]. The contribution of
this work is the adaptation of DDM to estimate the parameters of
FM sinusoids, which is not possible with the original DDM pre-
sented in [15].

Section 2 briefly reviews DDM estimation of the parameters
of (2) for the general case of (3) [15], section 3 presents the pro-
posed method of estimation of parameters of FM sinusoids with
DDM, section 4 presents performance evaluation, followed by the
discussion in section 5. Finally, section 6 presents the conclusions
and future work.

2. DDM ESTIMATION

The foundations of DDM estimation lie in the theory of distribu-
tions in mathematical analysis, which generalizes the concept of
functions to include objects such as the Dirac delta [26, 27] with
the aid of the test function ¢ with compact support Uy,. Distri-
butions x are interpreted as acting on the test function ) via inte-
gration over the support U,,. Notably, the theory of distributions
extends the notion of derivative of x, which lies at the core of the
DDM. Specifically, we want to analyze the signal z (¢) with the
test function v (t), which is zero outside Uy and infinitely differ-
entiable on Uy,. For such, we use the inner product

/_Zx(t)u?(t)dt:/

Uy
where ) is the complex conjugate of . The derivative of = with
respect to (w.r.t.) its argument ¢, which we denote &, is obtained
with the aid of f (t) = x (¢) ¢ (¢). The derivative of f w.r.t. ¢ is

(z,) z () (t)dt (5

then ) ~ .
fO) =@y @) +z @) (). (6)
Integrating (6) w.r.t ¢ over the support Uy, yields
JIOK:! :/ ;‘x(t)&(t)dwr/ 2 ()P (t)dt.  (7)
Uy Uy Uy

ere we note that F () dt = ecause and therefore
H h U, f®d 0Ob 1 (and therefore f)

vanishes at the borders of U,. Then, using the notation for the
inner product in (5), we have
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Equation 8 allows implicitly taking the derivative of the un-
known signal z by differentiating the test function v instead. The
idea behind DDM [15] is to apply (8) to the signal model of (4)
to estimate the model parameters «,. We note that the derivative
of (2) w.r.t ¢ reveals the property

() = L(t)exp{L ()} = L)z (t), ©)
which allows expressing (8) as
(La, ) = —(, ). (10)

Eq. (10) can be used to derive DDM estimation for any generic
AM-FM sinusoid that follow the model from (2). Using L (¢)
given in (3), we have L (t) = Zquo QgPq (1), so (9) becomes

Q
(1) =) aghy (t)z(t). an
q=0
Finally, replacing (11) in (8) gives
Q .
> aglpoz, ¥) = ~(z,9), (12)
q=0

which is the DDM estimation equation for the signal model in (4).
Betser [15] introduced DDM estimation for polynomial phase sig-
nals (PPS), which comprise a broad class of nonstationary signals
whose phase can be locally modeled by a polynomial [16, 17].

2.1. DDM Estimation of Polynomial Phase Signals

Polynomial phase signals (PPS) [16] are obtained when p, (¢)
t?, ¢ € Nin (3), where N denotes the non-negative integers. In
this case, p, (t) = ¢t ', ¢ € Ny, where N denotes the positive

integers, and

Q
Zaq<qtq_1$7¢> = _<I7w> (13)
q=1

Since p, only depends on the argument ¢ and on the power g for
PPS, the inner products (pgx,1)) can be computed for any un-
known signal x assuming its underlying model is PPS. DDM esti-
mates the PPS parameters o as the linear coefficients of a system
of equations given by (13). Betser [15] presents a general deriva-
tion that can use multiple integral transforms whose kernels re-
spect the conditions for the test function 1. Additionally, [15] de-
scribes how to use the windowed discrete Fourier transform (DFT)
to compute the inner product of (5) and also to derive the ma-
trix equation whose pseudo-inverse yields estimation of a,. The
next section derives —(x, w) using the windowed Fourier trans-
form because of the widespread availability of FFT implementa-
tions and effortless adaptability of the method for the short-time
Fourier transform (STFT), where each frame is assumed to fol-
low the same underlying model and parameter values that evolve
across frames.

2.2. DDM Estimation with the Windowed Fourier Transform
For the windowed Fourier transform, v (t) = w (t) ¢’**, where
w (t) is a tapering window with compact support that is differen-
tiable at least once. Then,

[ab (t) — jww (t)] e 7", (14)
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Replacing (14) on the right-hand side of (8), we get
(@, ) = (2, [ (1) — jww (B)] 77",
(@, ) = (w,7) = jeola, ),
where we use the shorthand 7(t) = w(t)e

(z,7) = (=z, w(t)ejwt>.

5)
(16)

3%t to define (x, T) as

a7

Equation (16) shows that (z, 1/1) only requires computing two
windowed Fourier transforms of the signal x (¢), namely (z, )
and (x, 7) defined in (17), which simply uses the first time deriva-
tive of the window w (t). Note that w (¢) can be computed analyt-
ically for most commonly used windows (except the rectangular
window, which has discontinuities, and the slepian window, which
does not have an explicit analytical expression), making the com-
putation of (17) very efficient. It is also worth mentioning that
w in (16) comes from the derivative in (14) and it is simply the
frequency from the Fourier kernel in 4 (¢).

At this point, we can use (13) and (17) to estimate the param-
eters of PPS with the DFT as described in [15]. In what follows,
we will derive DDM estimation for the FM signal model of (1).
We stress that DDM estimation originally presented in [15] is not
capable of estimating all the parameters of (1) because DDM for-
mulates parameter estimation as a /inear system of equations that
depend on a. Section 3 shows that (1) violates the constraint of
linearity because (1) contains parameters to be estimated inside
the argument of the functions p, (¢). Section 3.2 shows how to lin-
earize it with the Jacobi-Anger expansion to use DDM estimation
for FM sinusoids with the algorithm presented in Sec. 3.3.

3. HYBRID POLYNOMIAL-SINUSOIDAL ESTIMATION

We are going to use the FM sinusoid model from (1) in (8) writ-
ten as (10) to derive DDM estimation of (1). Comparison of (1)
with (2) yields L (t) = ao + j [bo + b1t + b2 cos (wot — ¢o)],
which gives

L (t) = j [bl — W b2 sin (UJot — qbo)] . (18)
We replace (18) in (10) to get
.j [bl <xaw> — Wo b2<Sin (th - ¢0) z, 1/’)] = —<l', 1/1> (19)

Equation (19) requires prior knowledge of wo and ¢ to esti-

mate b1 and bz, which uses the inner product (sin (wot — ¢o) x, ).

Even though (19) suggests that DDM cannot be used to estimate
all the parameters of FM signals, the rest of Sec. 3 is dedicated to
explaining how it can be achieved.

3.1. Estimation of the Initial Phase
Let us rewrite (18) as

L (t) = j [br — wo be sin (wot) + wo bs cos (wot)] - (20)
where b, = bz cos ¢ and by = b2 sin ¢o9. Now we replace (20)
in (12) to get

j [b1<$»¢> - w0b6<p5 l’ﬂ/’) + w0b3<pc :L‘7/l/}>} = —<$7’¢>, (21)

where
pe = cos (wot) (22)
Estimation of b1, b., and b, using (21) only depends on wo,
and ¢o can be easily retrieved from b. and bs (see Algorithm 1 for
details). Section 3.2 shows how to use the Jacobi-Anger expansion
to allow estimation of wg with the DDM.

and ps = sin (wot).
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3.2. Estimation of the Modulation Frequency

The Jacobi-Anger expansion is given by

exp{jbcos(0)} = Z §*Ji (b)exp {j 0}, (23)

1=—00

where J; (b) is the i*" Bessel function of the first kind. Therefore,
eq (23) allows rewriting (1) as

z(t) = f 5 Ji (b2) exp {ao + j [bo + bit + i (wot — ¢o)]}. (24)

Note that the ¢ in the exponential in (24) denotes an integer
multiple of the modulating frequency wo. Thus, eq. (23) expresses
the nonlinearity of FM sinusoids as a linear combination of sinu-
soids at the frequencies ¢ wo, sometimes called “FM harmonics”,
weighed by the amplitudes J; (b). Once again, comparing (24)
with (2), yields L (t) = ao+J [bo — i ¢o + ¢ (b1 + i wo)], whose
derivative w.r.t. t is

L(t)=j (b1 +iwo). (25)
Replacing (24) in (10) yields
(1)
b1 +iwo =j (2,0’ (26)

after some algebra. We note that (26) only depends on the car-
rier frequency b; and on the modulation frequency wg, and only
requires calculation of the inner products with (5) and (16). We
also note that ¢ € Z according to (23), which is simply the in-
teger multiple of the modulation frequency wo around the carrier
frequency b1. Equation (26) allows independent estimation of wo
by simply setting ¢+ = 0 in (26) to estimate b, and then ¢ = 1 to
estimate the modulation frequency wo as explained in section 3.3.
But we can further simplify (26) by replacing (16) to get

(z,7)

(z,1)

where (z, 7) is calculated with (17) and w is the frequency variable
of the Fourier transform. Equation (27) only requires calculation
of two windowed Fourier transforms, instead of three transforms
as required in (26).

b1 +itwo =7 + w, 27)

3.3. DDM Estimation Algorithm

The discrete-time version of the FM signal model in (1) is
z (n) = exp {ao +3 (bo + 271'%77, + b cos <277J;—gn - qbo)) }, (28)

where ao is the constant log amplitude, bo is the initial phase in
radians, f. is the carrier frequency in Hertz, fs is the sampling
frequency in samples per second, bz is the adimensional modula-
tion index, fo is the modulation frequency in Hertz, and ¢y is the
modulating initial phase in radians.

We want to estimate ao, bo, fe, b2, fo, and ¢o with the DDM
from M samples of z (n) in (28), which can also be considered
as a frame of the STFT. For such, we use the FFT to calculate (5),
(17), and both (p. x, 1) and (ps =, %) in (21). Note that w in (16)
and (27) becomes wy 27r%, where N is the size of the FFT
and k is the frequency bin. Additionally, the estimation method
using the FFT described in [15] only uses K frequency bins around
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Algorithm 1 DDM estimation of FM sinusoids

1: Estimate by using (27) withi =0

2: Estimate b1 + wo using (27) withi = 1
3: Calculate wq using steps / and 2

4: Calculate p. and ps from (22)

5: Estimate b1, b., and bs from (21)

6

7

8

. Estimate ¢9 = arctan Z*‘
c

be
cos (¢o)

. Estimate by, = Smb(ig%) > alternatively, use by =
. Estimate ap with the least-square estimator from [15]

spectral peaks, which are regions of maximum spectral energy. See
section VII in [15] for further details on using the FFT for DDM
estimation. Finally, the estimation is done with reference to the

center of the frame by multiplying the FFT by e “* E , where M
is the window size in samples. Algorithm 1 summarizes all the
steps required to estimate all parameters of FM signals.

Here, we note that the estimation algorithm 1 contains redun-
dancy in several steps that can be potentially exploited to increase
the accuracy of estimation. For example, steps 1 and 2 can be re-
peated for other values of ¢ and then step 3 would use (27) and
average the result of the estimation. Additionally, b is estimated
in step I and then again in step 5 as S{a1}. Also, b2 can be esti-
mated from either b. or bs. We have not exploited redundancy in
the current work, which is considered as future work.

4. MS SIMULATIONS AND CRLB COMPARISONS

Djurovié et al. [10] proposed a method to estimate the parameters
of coupled FM sinusoids, where the phase of the polynomial com-
ponent and of the sinusoidal modulation follow the same (poly-
nomial) model and have parameter values coupled by a constant.
In this work, only f. and fo are coupled as fo = co f.. Follow-
ing [10], co = 0.1 was used. The coupled FM signal model in [10]
is equivalent to (28) when the order of the polynomial phase and of
the sinusoidal modulation are both 1. Here, we also use fo = co fe
in (28) to compare DDM estimation and [10]. However, DDM es-
timation can handle both coupled and uncoupled FM signal mod-
els because the estimation of the sinusoidal modulation parameters
is independent of the polynomial phase parameters.

We note that [10] is based on phase unwrapping, so only phase
parameters can be estimated, and shorter signals result in better
estimation performance. On the other hand, DDM uses spectral
estimation, so longer signals yield better performance. The signal
length used was M = 2048 samples for DDM and M = 512
samples for [10]. Additionally, DDM used a 2048-sample Hann
window spanning the entire signal duration and an FFT with N =
4096 samples, whereas the stage 1 of [10] used a M = 24-sample
rectangular window and an FFT with N = 4096 samples. DDM
used ap = 0 and [10] the corresponding A = 1. Note, however,
that DDM can estimate the amplitude parameters but [10] cannot.
The common parameter values for DDM and [10] used in the MCS
presented here are by = —0.19 rad, f. = 2205 Hz, b, = 5.03,
fo =220.50 Hz, ¢o = 0.72rad, and f; = 44100 samples/s. Note
that by > 1, corresponding to wideband FM.

This section presents the result of 1000 Monte-Carlo simu-
lations (MCS) to compare the accuracy of the proposed estima-
tor against stage 2 and stage 3 of the estimator from [10] and
the CRLB in noisy conditions. The SNR is defined as SNR =
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exp {2a0}/,2, where o is the variance of the additive white Gaus-
sian noise. DDM estimation will be compared to both stage 2
and stage 3 from [10]. Fig. 1 shows the minimum squared-error
(MSE) of the estimators versus the SNR. The solid line is the exact
CRLB calculated by inversion of the Fisher information matrix,
the dashed line is DDM estimation, the dotted line is stage 2, and
the dash-dotted line is stage 3.

Betser [15] derived the CRLB for the polynomial phase com-
ponent of the model in (2), whereas the CRLB for the FM sinusoid
in (1) can be found in [7, 24]. To avoid numerical problems in
the inversion of the Fisher information matrix (FIM) when cal-
culating the CRLB numerically [7], we perform the calculation
for (%) in (28), which corresponds to the following parameter
vector [ao, bo, 20M/f, fe, ba, 27M/¥, fo, ¢o]. Consequently, we
have corrected the CRLB for f. and fo by (fs/2x1r).

5. DISCUSSION

The order of magnitude of the parameters varies from 10~ for
¢o and by up to 102 for fe, so the impact of the MSE of the es-
timators (and the corresponding CRLB) must be interpreted dif-
ferently. Note that Figs. (1c) and (1le) show fc and fo in Hz, and
that Fig. (1a) only shows DDM because [10] cannot estimate the
amplitude.

The bias of an estimator reflects the maximum estimation ac-
curacy that can be achieved with it. Estimation bias typically man-
ifests as the MSE of an estimator no longer following the CRLB,
as can be seen in Fig. 1. DDM starts following the CRLB after
SNR = 0dB for almost all FM signal parameters, presenting bias
only after SNR = 80dB for fo, fc, and qgo, Notably, ao, i)o, and
62 do not show estimation bias up to SNR = 120 dB. The estima-
tion of the modulation index b2 for FM sinusoids is a challenging
problem in the literature [7]. Stage 2 presents bias shortly after
SNR = 0dB, and stage 3 presents bias consistently before DDM.

DDM outperforms stage 2 above SNR = 20dB for all pa-
rameters due to the bias of stage 2. As expected, stage 3 outper-
forms DDM estimation for most parameters because stage 3 uses
the estimations from stage 2 to initialize a nonlinear optimization
procedure that achieves quasi-maximum likelihood (QML) perfor-
mance, which is designed to approximate MLE estimation and ap-
proach the CRLB. The implementation of the estimator from [10]
used in the MCS shown in Fig. 1 uses the Nelder-Mead Simplex
(NMS) search algorithm [28].

Table 1: Comparison of computational complexity of estimators.
The table shows the number of arithmetic operations and the esti-
mation time averaged over 1000 Monte-Carlo simulations. We are
interested in the relative estimation time. See text for details.

Estimator Number of Operations Computation Time (s)
(FFT) O(NlogN) 4
DDM (QR) o (K3) 7.38 x 10
(FFT) O (NlogN) 2
Stage 2 (QR) o ((2Q T 2)3) 1.87 x 10
(FFT) O (NlogN)
Stage3  (QR) 0 ((2Q +2)*) 2.29 x 1072
(NMS) O (M?)
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Figure 1: Mean-squared error (MSE) of each estimator versus the SNR after R = 1000 Monte-Carlo simulations. The parameters are

N = 4096, Hann window, M = 2048 for DDM and M = 512 for [10], ao

fo = 220.50 Hz, and ¢o = 0.72 rad, (fs = 44.1 kHz).

DDM estimation of FM sinusoids is sensitive to the initial es-
timation of wo. Wideband FM signals present spectral peaks at
27 fe 4+ i wo with high spectral energy according to J; (b). Con-
sequently, wideband FM favors estimation of wo using (27) even
in noisy conditions, as shown in Fig. (1e), as long as the FM side-
bands at integer multiples of wg are above the noise level. Es-
timation of narrowband FM signals might require exploiting the
redundancies in algorithm 1 to overcome the additional challenge
of low-energy sideband FM harmonics.

5.1. Computational Complexity

Finally, Table 1 compares the computational complexity of the es-
timators with regard to both the number of arithmetic operations
and computation time in seconds. The table shows the complexity
of individual algorithmic steps, such as the number of operations
required to calculate one FFT or one QR decomposition used for
the pseudo-inverse. The table also shows an estimation [29] of the
complexity of each iteration of the NMS algorithm, which reflects
the cost of evaluating the function in eq. (1) and performing least-
squares optimization. Thus, in this case, M = 512.

DDM estimation described in algorithm 1 uses the FFT with
size N and a matrix inversion by QR decomposition. The compu-
tational complexity of the QR decomposition algorithm is O (x*),
where Y is the largest dimension of the rectangular matrix with the
coefficients of the system of equations. For stage 2 and stage 3,
the model order @) determines x because there are 2(Q + 1) pa-
rameters to estimate. For DDM, x is the number of frequency
bins used in the estimation, which is the number of bins K around
the main lobe of the window in the DFT spectrum. Typically,
K = |BN/um|, where |-| denotes the floor operator and B is the
width of the main lobe of the window w (¢) in bins when M = N
(i.e., no oversampling). For the Hann window used here, B = 4 so
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—0.85, bo = —0.19 rad, f. = 2205 Hz, by = 5.03,

K = 8 when M = 2048 and N = 4096 used in the simulations.
Finally, we note that the window w (¢) chosen also impacts the es-
timation due to how the main lobe concentrates spectral energy, ef-
fectively changing B and potentially the estimation performance.

Table 1 also shows the average time in seconds for each esti-
mator. Naturally, time in seconds is highly dependent on the spe-
cific machine used for the simulations. However, the relative time
should be fairly consistent across machines. Therefore, compar-
ing how much longer an estimator takes on average should give
an informative illustration of their relative performances. Table 1
shows that DDM estimation is faster by two orders of magnitude,
taking approximately 4% of the time of stage 2 and 3% of stage 3.
Djurovié et al. [10] state that the most computationally demand-
ing step of their proposed estimator is the FFT, arguing that the
other steps can be implemented with less computational complex-
ity. However, stage 2 comprises several calculations, including
multiple QR decompositions, whereas stage 3 required, on aver-
age, more than 60 iterations of NMS with more than 100 func-
tion evaluations. This is the tradeoff of estimation accuracy versus
computational cost to achieve QML performance.

6. CONCLUSIONS

In this article, we presented an algorithm to estimate all the param-
eters of frequency-modulated (FM) sinusoids with the distribution
derivative method (DDM). The results of Monte-Carlo simulations
against additive white Gaussian noise showed that DDM estima-
tion of FM sinusoids has performance comparable to the state of
the art. DDM estimation is robust and unbiased for SNR below
80 dB. DDM estimation is relatively simple to implement with the
fast Fourier transform (FFT) and its computational complexity is
effectively the same. DDM estimation can also estimate the poly-
nomial phase component with arbitrary order.
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Future work includes comparing the estimation accuracy and
computational complexity of DDM estimation of FM sinusoids
with other methods in the literature. We will take advantage of
redundancy in the estimation algorithm to improve accuracy and
also investigate the impact of the tapering window on estimation
performance. DDM estimation can be used to initialize the nonlin-
ear optimization procedure corresponding to stage 3 in [10]. Ad-
ditionally, DDM estimation presented here can be easily adapted
to other classes of signals, such as sinusoidal [22, 21] or hyper-
bolic [7] phase. Finally, we will also investigate DDM estimation
of the instantaneous amplitude [16] of nonstationary sinusoids.
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