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ABSTRACT

Topology provides global invariants for data as well as spaces of
deformation. In this paper we discuss the deformations of audio
signals which preserve topological information specified by sub-
level set persistent homology. It is well known that the topological
information only changes at extrema. We introduce box snakes as
a data structure that captures permissible editing and deformation
of signals and preserves the extremal properties of the signal while
allowing for monotone deformations between them. The resulting
algorithm works on any ordered discrete data hence can be applied
to time and frequency domain finite length audio signals.

1. INTRODUCTION

Sound synthesis and manipulation methods operate on a space of
variability of sound under certain chosen properties. Recently,
topological methods have emerged as one way to structure sound
synthesis methods, either by giving more flexibility to existing
synthesis methods [1] or by providing direct deformation strategies
of oscillators [2]. Topology describes properties that are global or
flexible in nature. Data and signals can often be deformed under
certain rules that do not alter the underlying topology of the space.
Hence topological properties serve as a kind of invariant of the
signal under deformations. Previous methods suggest a geometric
setting that is higher dimensional, such as oscillators embedded in
a plane, or winding paths on the surface of a torus in three dimen-
sions.

This paper explores the analysis and manipulation performed
directly on finite length digital audio data, both in the time and
frequency domain. Hence we no longer need to leave the sampled
1-dimensional setting that is typical of audio data. This setting
is both convenient and familiar to practitioners in digital signal
processing.

Specifically, we develop the notion of box snakes as a struc-
ture that describes the space of deformability of audio signals that
does not alter the underlying topology as characterized by sublevel
set persistent homology [3]. A characterization coined topological
signature has been developed in a related but somewhat different
spirit and context [4]. We also extend existing algorithms to work
with all possible sample sequences without requiring exceptions
or other technical assumptions on the data. The algorithm will
allow for monotonic deformation of audio samples between local
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extrema. Given that the algorithm works for any finite ordered
discrete series data, we demonstrate its use both on time domain
as well as on frequency domain data, hence also give topology-
preserving deformations of spectra.

2. RELATED WORK

In the last two decades fields such as Computational Topology
[5, 6], Applied Topology [7], Topological Signal Processing [8]
have emerged as vibrant fields of inquiry across many disciplines.
A range of topological techniques have already been proposed for
audio and more generally time series data [9]. Sliding window per-
sistent homology utilizes the embedding of time series in higher
dimensions and then computes point cloud persistent homology
on the data [10]. This approach has already demonstrated to be
useful in musical instrument detection on the example of the dif-
ferentiation of a clarinet and a viola [11]. Audio data has also
been modeled using sheaf-theoretic approaches [1]. Finally, syn-
thesis of audio data can also be achieved by generalizing circular
oscillators to more general path-connected spaces [2].

In this paper we will work with sublevel set persistence [3, 12,
13], which has been used to tackle numerous problems in time-
series signals such as zero-crossing detection [14], damping pa-
rameter estimation [15], and additive noise analysis [16]. The sub-
level set persistence algorithm used in these cases [16] is avail-
able in Python as part of the Teaspoon topological data and sig-
nal analysis library [17]. Sublevel set persistence is also the basis
of more sophisticated graph theoretic characterization of functions
[18, 12, 19, 20, 21].

This work introduces a data structure called box snakes to
specify a space of deformation for resynthesis and manipulation
and an algorithm to compute it. The idea is that levelset persistence
provides an invariant due to the pattern of extrema which form an
alternating snake-like pattern (snakes was studied as mathematical
objects by Arnold [22]), and any data that yields the same topo-
logical characterization is topologically equivalent. This yields a
resynthesis technique in the time domain. Some of these ideas re-
semble Extended Waveform Segment Synthesis as developed in a
thesis by Valsamakis [23, p. 120-121]. This work suggested sound
segmentation along numerous identifiable local markers such as
amplitude levels, zero crossings, as well as minima, and maxima.
It, however, does not require any invariant properties, such as the
preservation of topological information) from the selection of local
markers. The thesis also contains a review of an array of proposed
interpolation techniques, a monotone version of which applies to
the approach proposed here. The technique presented in our work
can be viewed as a topological version of an analysis-synthesis
technique, where the analysis is topological and the sound syn-
thesis is the space of allowable deformations. It is also relatable to
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Figure 1: Sublevel Set Persistent Homology of a finite Audio signal. As we raise the level line, more of the signal is included. The
connected component at each level (red) is depicted below the time series graph. At extrema, connected components are created or merged.

graphical synthesis methods that draw waveforms, and specifically
interpolation synthesis techniques [24, for a review].

The algorithm technically operates on any sequence of discrete
data points, hence it can be naturally applied to discrete finite-
length data in the frequency domain, such as for example the Am-
plitude or real spectrum of a discrete Fourier Transform (DFT).
Previous work includes the study of weighted Fourier series [25]
and Walsh-Fourier Transforms [26] in the context of sublevel set
persistence. The former is based on the assumption of continu-
ous Morse functions and the latter uses a transform not particu-
larly well-suited for Audio analysis. In our work we do not as-
sume continuous functions, merely the discrete time series data.
We compute discrete Fourier transforms and compute the level set
persistence on the real spectrum.

In order to compute the sublevel set persistence on finite length
discrete data without any restriction on the data, we modify an
existing algorithm by Baryshnikov [12]. The original algorithm
has some technical restrictions. It requires that all extrema be
generic and isolated. The genericity (also called uniqueness) cri-
teria means that no two extrema can be on the same value. This
restriction is unnatural for audio data. Basic signals such as si-
lence (all zeroes) or any undamped sinusoid have extrema of the
same value as periods repeat [27, Appendix A]. The second re-
striction of isolated extrema is that the algorithm does not allow
for flat extrema, meaning extrema which have the same value for
consecutive samples. This too is not unusual in especially artificial
audio samples, in fact any constant function in this context can be
viewed as a minimum (and maximum) of all equal values, hence
again does not fit the restriction. Rectangular waves, even if an-
tialiased, can have flat portions, and certainly arbitrary audio can
have passages that contain repeating values at extrema on occa-
sion.

The modified algorithm gives equivalent topological informa-
tion to Baryshnnikov’s in all comparable cases, hence removes
the restrictions in an appropriately principled way. This algorithm
computes similar data as one given by Myers et al [16] but is dif-
ferent in detail. the Python library scipy.signal provides the
find_peaks function which will return flat extrema, and this
function is used to implementation of the algorithm described in
[16]. Other algorithms exist [28] though often with similar restric-
tions as Baryshnikov’s remain [29]1.

1The given restrictions are primarily motivated by classical Morse the-
ory of differentiable functions, as well as being able to study binary merge
trees rather than more general ones, both notions we do not have space to
explain here. The interested reader can find more detail in [12] and refer-
ences therein.

3. TOPOLOGY OF DISCRETE SEQUENCE OF SAMPLES

A sequence of audio samples is just an array of numbers. On its
face a discrete set of the sequence has a discrete topology. How-
ever, the sequence of numbers also has a sequential order or suc-
cessor relationship. We can identify which samples are neighbors
of others. There are various ways to represent this additional struc-
ture. For example, one could connect neighboring samples by
"graph lines" that are meant to capture this relationship. Another
approach is to simply recognize that samples are connected by suc-
cessor/predecessor relationships. Algorithmically, this is captured
by increment of array indices and the recognition that the order of
array entries matters. In this paper we will use all these concepts
to illustrate how topological notions operate on discrete samples in
our given context. We call a sample a boundary if it has only one
neighbor and we call a sequence of samples periodic if the succes-
sor of the last sample is the first sample in the sequence (and the
predecessor of the first sample is the last one). Equivalently this
means that indices computed modulo the length of the sequence
preserved this successor/predecessor relationship. This means that
sequences with boundaries in our case are not connected between
endpoints whereas a periodic sequence connects the endpoints of
the array. If samples in a subsequence of the original sequence
are neighbors of each other we say that they are connected. A
sequence of all consecutively connected neighbors is called a con-
nected component. An isolated point is its own connected com-
ponent. Throughout this paper we will assume that all our sample
data is bounded, which is a natural assumption for audio data.

4. SUBLEVEL SET PERSISTENCE HOMOLOGY

Sublevel set persistent homology computes the changes in connec-
tivity as a level set moves across a function2. The idea is depicted
in Figure 1. The figure shows a red horizontal line. This line marks
a level. A sublevel set is a subset of the original sequences of sam-
ples such that a sample is included if and only if the its value is at
or below the level set.

We visualize a current sublevel set by a graph-like horizontal
structure below the sample plot as copies of the included sample
without amplitude, but with their neighborhood relationships de-
picted by connecting lines.

Think of moving the level that selects the sublevel set from be-
low the global minimum to above the global maximum. Steps of
this process are illustrated in Figure 1. Each subfigure illustrates
what happens when a local minimum or maximum is reached. No-
tice that if the level is set below the global minimum, nothing is

2Due to the limited space, the exposition here is necessarily somewhat
compressed. For a more leisurely introduction of topological notions for a
DAFx readership the author has prepared expository material that is more
expansive on many of the notions used here [30, 31].

DAFx.2

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

330



Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

(a) Interval with Boundaries(a) Interval with Boundaries (b) Circular Domain(b) Circular Domain

Figure 2: Barcodes of positive and negative impulses on (a) an interval with boundaries and on (b) a circular domain. Sublevel line (red) and
connected component (below graph) are shown at the minima. The symmetry for the circular domain is broken for the bounded interval.

included. But as we hit local minima, samples become included in
the sublevel set. If the minimum is flat, all points at that level are
included (leftmost subfigure). If the minimum is a local point then
just one sample is included (second subfigure). Graphically we
depict that by showing a connecting line segment, but the reader
should be cautious not to think of that as a geometric line, but
rather like a line in an abstract graph representing connectivity.

As we move upward with the red level line, notice that con-
nected components grow with the monotonically increasing sam-
ples until a local (potentially flat) maximum is reached (the right-
most two subfigures). At the local maxima connected components
from the left and right of the maximum fuse and form one bigger
connected component. The key observation is that connected com-
ponents are created at minima, and that connected components are
joined at maxima. A connected component is a topological entity
that is counted in the 0th Homology. The number counting them
is called 0th-Betti number3 or Betti-0 for short. For our purposes
it is sufficient to understand that we are counting connected com-
ponents and their change (creation, joining). The stretches of rais-
ing the level that does not cause any change number of connected
components give rise to the word persistence of a connected com-
ponent and motivates the name persistent homology. Equivalently
these changes also reflect monotone sequences between extrema.
A sequence is monotone if all consecutive samples are partially or-
dered, that is x[n] ≤ x[n + 1] for all samples in a monotonically
increasing subsequence and x[n] ≥ x[x+ 1] a monotonically de-
creasing subsequence. Note that the condition of monotonicity
implies that there are no extrema in the subsequence.

One can keep track when a connected component is created
at a minimum and when it is joined with another is via a bar-
code depiction (see the vertical bars in the far right of Figure 1)4.
The bottom is the starting level of the connected component exist-
ing and the top is the moment when the connected component is
joined with another. As one moves the level set higher and higher
more and more of the signal is included, local minima can spawn
new connected components while local maxima will join some,
hence reducing the number that exist. But ultimately once one
passes the global maximum of the audio signal, the whole sig-
nal will be included hence forming one single connected compo-
nent. Philosophically that connected component lives on even as
we move into a theoretical infinity. Hence there is always one bar-
code left that never terminates. This is the topology of the audio
signal as a whole. In our depictions of barcodes we will not honor
this theoretical notion and show the end barcodes at the global

3See [30] for more detailed exposition of Homology.
4All our barcodes are of the 0th Homology hence represent connected

components.

maximum. Barcodes are, however, just one way to capture the
changes in topology at minima and maxima. Another popular way
to organize this data are merge trees, which simply record creation
at minima as leafs and joins of connected components as interior
joints of a tree structure. It is known that our setting leads to mul-
tiple branches associated with an internal node [18], but literature
treating this case explicitly is scant. We are not considering merge
trees in this paper.

Finally, recognizing that minima and maxima necessarily need
to alternate on a sequential discrete data, one can also depict the
information as a snake [22, 18, 12]. We will use barcodes to de-
pict a given levelset persistence, and we will use an extended no-
tion of snakes as the primary data structure to allow for topology-
preserving deformations of our sequential discrete data.

5. PERIODIC DOMAIN VERSUS INTERVAL WITH
BOUNDARIES

Especially with respect to periodic signals and their discrete char-
acterization via the Discrete Fourier transform, it is known that the
array is periodic, meaning that the successor of the last entry in the
array of audio samples is the first entry. An alternative, perhaps
naively more natural assumption is that the array is just a sequence
of data with a starting and an end point, assuming no periodicity.
Topologically this makes the start and end points into boundary
points which are different from other points in the sequence in
that they have only one neighbor under a successor/predecessor
relationship. The existence of boundaries distinguishes these two
cases. In the following we explore some properties as a conse-
quence of each choice with respect to sublevel set persistent ho-
mology, to support the notion that periodic assumption give more
natural results for the purpose of topological characterization of
digital audio.

First we consider a positive and a negative impulse somewhere
in the sequence away from the array boundary as shown in Figure
2 (a). The left side of the figure shows the sublevel set persis-
tent homology of the interval with boundaries. Notice that at zero
level, two connected components are created, one for each side of
the impulse. These then merge at the peak of the impulse. Hence
the presence of boundaries means that we have two minima and
one maximum. Hence we have two barcodes, one for each mini-
mum. The right side of the figure shows the sublevel set persistent
homology of a negative impulse on the interval with boundaries.
Notice that now there is only one minimum hence only one con-
nected component is created and at zero both sides join with it to
create one connected component joining with two maxima. Hence
we have only one barcode. Hence we find that the inverse of a
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signal does not necessarily have the same topological character-
ization as the original signal! This is awkward for audio where
axial symmetry is a central property. Furthermore notice that the
number of maxima and minima do not match, and the way they
mismatch changes under axial symmetry.

Now we consider the same signal over a periodic domain as
shown in Figure 2 (b). This means that the left of the sequence is
considered to be connected with the right (and vice versa) though
that is not explicitly depicted in the figure. For the positive impulse
the zero level now forms one connected component (due to this
connection!) and hence we get one minima at zero and one max-
ima at the peak. The same effect but with inverted roles of minima
and maxima plays out for the negative impulse. We get one min-
imum from the negative peak, but now one connected maximum
at zero. Hence now we get a single barcode representing both the
positive and negative impulse. Hence the presence and handling of
extrema at the boundary introduces an asymmetry that disappear
in the periodic case.

The case of the boundary is further complicated if the impulse
occurs at the boundary samples, because in that case the bar code
changes again, and in fact only one is created for both the posi-
tive and the negative impulses. Hence the interval with boundaries
is not consistently encoding barcodes for impulses over the whole
length of the interval but gives different results whether the im-
pulse is at the boundary or in the interior. The original algorithm
proposed by Baryshnikov [12] fixes this by introducing an artifi-
cial global minimum next to one boundary and an artificial global
maximum at the other. This has the effect of making all points in
the original sequence interior points, hence removing the bound-
ary effects, and additionally guarantees that the number of minima
and maxima over the extended interval is equal. However, this fix
has no inherent justification from the signal.

The periodic domain does not suffer this effect, nor does it
require mitigating assumptions. The barcode of the impulse is in-
variant under any periodic shift (with the period being the length
of the sequence) of the impulse on the domain. And furthermore
notice that the number of minima and maxima of a non-constant
sequence can be proven to always match. Assume that there is a
discrepancy in the number. This implies that the signal would have
to grow in one direction indefinitely, but the number of samples to
represent the signal is finite, arriving at a contradiction.

From a topological perspective these effects make sense. Bound-
aries are central aspects of homological information. The presence
and absence of boundaries changes the homology [30]. Hence for
the purpose of signal characterization it is important to be clear
what one assumes about the signal to get a well-fitted topologi-
cal characterization. Periodicity assumption on sequences appear
formally in techniques such as finite length discrete Fourier trans-
forms, hence this assumption matches well the underlying struc-
ture of standard spectral analysis techniques in digital audio. At
the same time the prevailing paradigm of understanding perception
of audio is via assumptions of periodicity detection [32]. Hence,
in this paper we use periodic domains for all examples outside this
section.

Circular domains when both the time and frequency domain
are sampled (and due to duality made circular in the other domain),
as shown by Steiglitz [33] (see Figure 3). Hence our homological
arguments for circular domains of sublevel set persistence compu-
tations match the known circular properties of the DFT of finite
length. This is equivalent to treating the the indexing of the sam-
ples under modulo arithmetic [30].

DFT

inverse DFT
kt

Figure 3: Duality of discrete finite length time and frequency data
under the Discrete Fourier Transform [33].

6. COMPUTING SUBLEVEL SET PERSISTENCE

A sublevel set persistence algorithm takes as input a finite se-
quence of discrete data and returns a set of barcodes. Our starting
point is an algorithm proposed by Baryshnikov [12]. Rather than
provide a separate algorithm we will include our barcode construc-
tion within the box snake algorithm 3.

We assume that the discrete data set is periodic, thus if we
have a discrete finite set of samples of length p and our index
starts at 0 then we have that the successor of x[p] is x[0]. This
means that the our indexing of the sample arrays will happen in
integer arithmetic mod p. The consequence for modifying the al-
gorithm is largely straightforward. It means that one has to pick a
point on the domain and check if one completed a cycle of length
p. Various specific strategies for this adoption have appeared in
the literature, such as separating the cycle and reconnecting it after
computing the separated case [28]. In this paper we always com-
pute in mod p directly. Our sublevel set persistence computation
differs from other examples in the literature in that we make no
assumptions of genericity or isolate extrema of our discrete data.
This means that multiple barcodes can start at the same level and
multiple barcodes (not necessarily the same set) can end at the
same level as well. This means that there is no unique hierarchy
or order of emergence of bar codes, and we will ignore the usual
ordering by the elder rule. Our bar codes will guarantee to cover
creation of a connected component at a local minimum, and the
joining to at least one neighboring connected component at the
nearby local maximum. This simplifies the handling of bar codes
as we no longer try to reconstruct the elder prioritization. Further-
more we need to handle the potential of flat segments in the data.
Flat segments are neighboring samples that are at the same level
(x[n] = x[n + 1] = · · · = x[n + l − 1] for a flat of length l.
The handling of flats is done in a straightforward way by using a
function for advancing samples that advances over flat segments
as shown in algorithm 2. The actual construction of the bar code
happens when a local extremum is detected. Pairs of extrema need
to be organized into a barcode, which is straightforward but re-
produced for completeness in the function presented in algorithm
1.

7. BOX SNAKE OF DISCRETE SAMPLE SEQUENCES

Arnold [22] coined the term snake for a discrete pattern of num-
bers that alternate in total order: x[0] < x[1] > x[2] < · · · >
x[n − 1] < x[n]. This structure reflects the fact that extrema of
one dimensional sequences of numbers necessarily need to alter-
nate between minima and maxima. Hence snakes are contained as
subsets of any finite audio time series. Note that we take x[0] here
as an arbitrary reference point, and the sequence could continue
with negative index or be labeled with an alternative indexing.

For our purposes we want to create a structure that captures
the snake behavior as well as carries through audio samples be-
tween extrema. To this end we create a box snake structure. A
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Algorithm 1 Construct Bar from Extremum

1: barcode← empty barcode array
2: bars← 0
3: function CONSTRUCTBAR(data,dir)

▷ data is data at extremum, and dir is −1 for minimum and 1
for maximum

4:
5: if barcode[bars] not created then
6: barcode[bars] = new array[2]
7: end if ▷ Convert dir from −1,1 to 0,1
8: barcode[bars][(dir+1)/2]=data
9:

10: if barcode[bars] is filled then
11: bars← bars +1
12: end if
13: end function

x[0]x[0]  x[m + 1]  · · · x[n � 1]  x[m + 1]  · · · x[n � 1] � x[1] � · · · x[m � 1] �� x[1] � · · · x[m � 1] � x[m]x[m]

x[0]x[0] > x[m]x[m] x[n]x[n]

x[n]x[n]

<<

Figure 4: The box snake structure of alternating extrema with
monotone sequences between them.

box snake is a snake with allows for additional samples between
extrema that are required to be monotone. x[0] < x[1] ≤ . . . ≤
x[n−1] < x[n] > x[n+1] ≥ . . . ≥ x[m−1] > x[m]. While the
snake structure is necessary (unless there function is constant), the
monotone stretches are optional and can be empty. This is the case
when a local extrema is followed immediately by another (mini-
mum following a maximum or vice versa). The structure of a box
snake is depicted in Figure 4.

The key connection between sublevel set persistence and box
snakes is that only extrema alter homological information (the 0th
Betti number counting the number of connected components). Hence,
the monotonic sequences between extrema do not impact this in-
formation. Any arbitrary monotonic sequence is permissible and
will not change the sublevel set persistent homology. Hence any
deformation of these sequences that preserves monotonicity is al-
lowable. This insight forms the key ingredient in the (re)synthesis
method of this paper.

Figure 5 shows only the monotone boxes computed by the box
snake algorithm 3. The vertical boundaries of the boxes are given
by the levels of adjacent extrema. The samples included are all the
samples not part of extrema, which can be potentially flat. This
latter choice is somewhat arbitrary. Flat sequences of samples are
not essential to maintaining a barcode. Strictly only one sample
of the flat needs to stay at its level to maintain a barcode without
change. Hence one can in principle move samples from flat ex-
trema into monotone adjacent boxes. The inverse also holds as we
will see in Figure 6.

Figure 5: Monotone boxes (blue) computed from the box snake
algorithm. These are the rectangular areas where monotone defor-
mations of the samples will not alter the bar codes on the right.
The green connecting lines are for visualization purpose only and
are not meant to imply linear functional values between samples.

8. ALGORITHM TO COMPUTE BOX SNAKES

Algorithm 3 gives the Snake Boxes associated with a finite data
sequence (usable for both time and frequency domain). It assumes
that the array is periodic, that is, succesorx[p− 1] = x[0]. Hence
our index is computed modulo p whenever array entries are in-
dexed. However, it can be convenient to have sequences succes-
sively increase, hence the algorithm also uses indices that are lifted
into periodic repetitions of p (Topologists think of this the lift into
the cover). Our algorithm has the following properties: (1) Handle
local flat extrema as belonging to the extremum. (2) Allow for flats
within monotone sequences.

Flat sequences are relatively straightforward to handle though
there is scant discussion in current literature about how to do so.
The function that handles this described in algorithm 2. The func-
tion takes a current index as input as well as the modulus (which
is equivalently the length of the sequence) and returns the position
to skip to in order to skip over a flat region. Using this function as
sequence incrementer will handle flats and also allow us to keep
track of them by storing information about pre-function indices
and length skipped.

Algorithm 2 Skip number of successive flats from a start position

1: function SKIPFLATS(s,p)
▷ s is the start index, p is the total number of samples

2: for i← s, s+ p do
3: if data[i mod p] ̸= data[(i+ 1) mod p] then
4: return i+ 1
5: end if
6: end for
7: return s+ p
8: end function

The full algorithm uses this function whenever it needs to ad-
vance the index through the sequence. The function is also useful
to turn existing algorithms that compute sublevel set persistent ho-
mology on sequence data that do not support flats into ones that
do. We have adopted Barychnikov’s algorithms for sublevel set
persistent homology to allow flats and used it to compute the bar
codes in illustrations throughout the paper. The algorithm was fur-
ther adopted to allow extrema at the same level (remove genericity
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Figure 6: Deformations within one Snake Rectangle (left) at the level of the minimum (middle two) intermediate piece-wise linear inter-
polations (top) partially at the level of the maximum. Notice that none of these deformations change the bar codes on the right. The green
connecting lines are for visualization purpose only and are not meant to imply linear functional values between samples.

requirements) and allow for operation on periodic sequences.
Clearly algorithm 3 has computational complexity of O(p)

where p is the number of samples. In the worst case 2 ∗ p − 1
samples are inspected, when a p − 1 length monotone leads into
an extremum pair.

9. MONOTONE DEFORMATIONS WITHIN A SNAKE
BOX

In principle, any monotone deformation that stays within the bounds
of a snake box is permissible. To illustrate concrete deforma-
tion we implemented straight-forward piecewise linear interpola-
tion with one intermediate point (that can either interactively or
programmatically controlled). Piece-wise linear signal synthesis
has been proposed by Bernstein and Cooper [34] and hence this
can be thought of as a topologically preserving version of that tech-
nique in this case. Four example deformations using this approach
can be seen in Figure 6. The leftmost subfigure shows a linear in-
terpolation that at all sample points aligns with the local minimum
bounding the snake box. This deformation is permissible because
it does not alter the bar code. If we reran the snake box algorithm
it would however now identify these points to a flat minimum and
not a monotone segment. This is the ambiguity of flats belonging
to extrema or monotones previously mentioned. The middle two
subfigures show piecewise linear interpolations strictly away from
the adjacent extrema. The final example shows a subset of samples
at the level of the adjacent maximum while the remaining samples
linearly and monotonically descent to the minimum. This again is
permissible.

10. RESIZING SNAKE BOXES

Figure 7: Neighboring extrema and monotone boxes can be resize.
(Left) All samples at the flat level of extremum are part of the
extremum. (Right) All but one sample at the extremum are moved
into the neighboring monotone box and could be deformed there.

Algorithm 3 Construct Box Snake for a Data Set

Require: data, i ▷ i is an arbitrary starting index
Require: class Box {sx,sy,ex,ey,dir,type}

1: Boxes← empty stacks of type Box ▷ Stores box snake
2: p← data.length ▷ p is the modulus of the periodic series
3: f← i ▷ Start of a potential flat skip
4: i← skipFlats(i,p) ▷ Advance index across flats
5: if i = f+p then ▷ Everything is flat?
6: return "Constant function. Betti-0 is 1, Betti-1 is 1."
7: end if
8: dir← sign(data[i]−data[i− 1]) ▷ Get inclination direction

▷ Skip initial monotone
9: while (data[i]−data[i− 1])∗dir ≥ 0 do

10: f← i
11: i← skipFlats(i,p)
12: end while ▷ Loop ends if direction changes at extremum
13: periodstart← i ▷ Start position

▷ Process one period from here
14: while i <periodstart+p do

▷ Record an Extremum.
15: boxes.push(new Box(

f,data[f mod p],i− 1,data[i− 1 mod p],
dir,"extremum"))

16: constructBar(data[i− 1 mod p,dir) ▷ Construct Bar
17: dir←−dir ▷ New monotone direction

▷ Find potential Monotone Sequence.
18: sm← i ▷ Start of monotone sequence
19: smdata← data[(i− 1) mod p] ▷ Data before sequence

▷ Follow monotone
20: while (data[(i) mod p]−data[(i− 1) mod p])∗dir ≥ 0 do
21: f← i
22: i← skipFlats(i,p)

23: if sm < f then ▷ Is Monotone non-empty?
▷ Record a non-empty Monotone

24: boxes.push(new Box(
sm,data[(sm−1) mod p],f−1,data[f mod p],
dir,"monotone"))

25: end if
26: end while
27: end while
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(a) Time Domain(a) Time Domain (b) Frequency Domain without Flat Noise Tolerance(b) Frequency Domain without Flat Noise Tolerance (c) Frequency Domain with Flat Noise Tolerance(c) Frequency Domain with Flat Noise Tolerance

FFTFFT

Figure 8: Time domain signal (a) of two additively mixed sinusoids at a 1:2 ratio and their real symmetric Fast Fourier Transformed
(FFT) Frequency Response with (b) strict flatness and with (c) flat noise level tolerance. Notice that the flat noise reduction removes small
barcodes due to numerical inaccuracies of the FFT.

Snake boxes are not necessarily uniquely defined. Specifically,
flat extrema and neighboring monotone boxes are ambiguously de-
fined. Any connected part of the flat can be interpreted as belong-
ing to the extremum or the monotone section as long as at least one
sample remains with the extremum to preserve the bar code. This
leads to the ability to resize boxes along extrema flats as illustrated
in Figure 7. The resizing of flats implies that, within any current
flat, boxes can be resized to move extrema.

11. GLOBAL EDITING AND DEFORMATION

In principle snake boxes can be edited independently. However,
it can be convenient to manipulate all boxes in a snake together.
Snake boxes can, however, have very different sizes. Various glob-
alized editing schemes are thinkable, such as editing all snake
boxes of same width, height, or treating editing points within them
relative to box dimensions.

We implemented a percentage scheme that places editing points
relative to the box dimensions in order to globalize editing points.
Furthermore, we explored an option to mirror the horizontal edit-
ing dimension to match the slope, hence edits will create identical
but mirrored slopes. This mimics the the typical behavior of pure
sinusoidal functions that have a mirror symmetry around extrema.

Global resizing of snake boxes is implemented as grow-or-
shrink-over-flats motions that are propagated through all boxes,
and performed if permissible locally.

12. NUMERICAL CONSIDERATIONS

A strict implementation of algorithm 3 treats any variation of the
signal at any level. Hence a very noisy signal may contain great
numbers of short bars. Given that we consider both time and
frequency domain signals, numerical inaccuracy of the discrete
Fourier transform used will also cause noise-like variations. A
comprehensive solution of denoising via sublevel set persistent
homology operates on removing consideration of very short bar
codes [16] which in our context translates into also reducing the
number of box snakes. In practice we found that variations in-
troduced by numerical inaccuracies tend to primarily create spuri-
ous bar codes when they perturb flat levels. Variations on mono-
tone inclines from numerical inaccuracies tend to be so small as
to not form local extrema. Hence the practical and computation-
ally cheap solution is to modify the function 2 from checking and
skipping exact flatness, to allow for very small variations. Hence if
we replace the non-flat condition in algorithm 2 with the following
|data[i mod p] − data[(i + 1) mod p]| > noiselevel with a small

but non-zero noiselevel, flat skipping will become sufficiently in-
sensitive to variations.

To illustrate this process, consider the time-domain mixture of
two sine functions of Figure 8, its symmetric real spectrum via a
FFT, all using 64 data points, with and without flats tolerant of a
noiselevel of 10−12. The red levelset line is placed at zero and
we can see from the sub levelset that not all points at zero are
included that are expected. However, with our noise tolerance in
flat detection, the unwanted barcodes disappear leaving only the
desired ones.

13. CONCLUSIONS

In this paper we developed a method to resynthesis and manipu-
late finite-length digital audio data that preserve the topology of the
signal via sublevel set persistent homology. We introduced the no-
tion of a box snake to capture various aspects of deformation per-
missible within a given topological constraint. We demonstrated
that treating the finite length audio data as periodic in the domain
both fits traditional time-frequency analysis of discrete signals as
well as avoids undesirable properties in the topological character-
ization. Ultimately this leads to a scheme of manipulating audio
data up to any monotone deformation on monotone segments be-
tween potentially flatly extended extrema, as well as the ability to
resize and change flat extrema sizes. Our approach removes tech-
nical requirements usually associated with sublevel set persistence
of functions, given that we deal only with finite length discrete
data. Local and global editing schemes are illustrated on exam-
ples. This paper suggests deformation directly on audio signals as
compared to previous work that deformed oscillators or used sheaf
construction.

However, in many ways the current paper is just a first step
in understanding the relationship of topological properties of time
and frequency domains. There is hope that the relationship of
properties between these two domains can be systematically stud-
ied as the discrete Fourier transform is a maximum rank linear
map over the complex numbers, and topological characterizations
of barcodes is increasingly understood in terms of modules. This
characterization is future work.
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