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ABSTRACT

While immersive music productions have become popular in re-
cent years, music content produced during the last decades has
been predominantly mixed for stereo. This paper presents a data-
driven approach to automatic binaural upmixing of stereo music.
The network architecture HDemucs, previously utilized for both
source separation and binauralization, is leveraged for an end-
to-end approach to binaural upmixing. We employ two distinct
datasets, demonstrating that while custom-designed training data
enhances the accuracy of spatial positioning, the use of profession-
ally mixed music yields superior spatialization. The trained net-
works show a capacity to process multiple simultaneous sources
individually and add valid binaural cues, effectively positioning
sources with an average azimuthal error of less than 11.3 ◦. A lis-
tening test with binaural experts shows it outperforms digital signal
processing-based approaches to binauralization of stereo content
in terms of spaciousness while preserving audio quality.

1. INTRODUCTION

In the past decade, the realm of immersive audio has gained sig-
nificant attention from both academia and industry [1]. While the
majority of consumed music is still stereo [2], an increasing num-
ber of streaming providers offer immersive content [3, 4]. The
shift towards immersive content is also visible in the music indus-
try as shown by recent advances in upmixing pop-cultural classics,
which were originally produced in stereo [5]. This work explores a
data-driven approach for automatic upmixing of music from stereo
to immersive binaural. The scope of this work focuses on the re-
production of immersive content on headphones, one of the most
accessible mediums for music consumption [6], which makes them
an interesting platform for immersive playback and upmixing.

Traditionally, upmixing methods aim to increase the number
of channels present in a given audio excerpt and can typically be
split into two main categories, namely, direct ambient extraction
and source separation [7]. Direct ambient extraction methods aim
to decompose a given signal into direct and ambient components
using techniques such as Wiener filtering [8], principal component
analysis [9], or using Deep Neural Networks (DNNs) to estimate
time-frequency masks [10, 11]. The extracted ambient component
is then typically positioned in the rear or surround speakers [12].
In contrast, the second category of methods aims to generate addi-
tional output signals by identifying direct sources and re-panning
them in a higher-order loudspeaker configuration [7,13–15]. Many
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upmixing algorithms combine both approaches, while decomposi-
tion and analysis is usually done in the time-frequency domain
[7, 14], allowing for the separation and re-panning of multiple di-
rect sources [15].

More recently, a new category has emerged focusing on end-
to-end upmixing approaches. For example, Yang et al. [16] pro-
posed an upmixing approach using variational autoencoders and
neural style transfer. This approach is based on the disentangle-
ment of the spatial attributes of a stereo mix from its musical con-
tent, thereby enabling the conversion of audio from two to five
channels by adjusting the spatial image [16].

Focusing on source separation techniques, DNN-based ap-
proaches have become prominent in the field of Blind Source Sep-
aration (BSS), particularly for Music Source Separation (MSS).
Typically MSS aims to isolate submixes from the original stereo
track into four distinct categories: ‘Drums’, ‘Vocals’, ‘Bass’,
and ‘Other’ [17]. The primary network architectures employed
are based on Convolutional Neural Network (CNN) [18–21] or
Recurrent Neural Network (RNN) [22]. CNN-based architec-
tures typically incorporate two separate branches for time-domain
and frequency-domain representations of the signal [19–21]. No-
tably, the bi-U-Net Hybrid Transformer Demucs [19], which com-
bines Wave-U-Net [18] and HDemucs [20], delivers the best per-
formance in Signal-to-Distortion Ratio (SDR) on the MUSDB18
dataset [23], surpassed only for extraction of vocal components
by the RNN-based Band Split RNN (BSRNN) [22]. BSRNN uses
complex-valued spectrograms and multiple dual-path RNNs, each
acting on individual frequency bands [22]. While these models
are computationally expensive, simpler models like the KUIELab-
MDX-Net [21] exhibit marginally lower performance. The use
of larger datasets has been shown to improve the performance of
MSS, where the best-performing networks are typically trained
with more than 800 songs [19].

Reproducing immersive mixes on headphones involves bin-
aural rendering typically done by convolution of the compos-
ite monophonic signal of a given virtual scene with Head-
Related Transfer Functions (HRTFs) representing a given posi-
tion [24]. Recent work has explored binaural rendering using
DNNs. Richard et al. [25] introduced WarpNet, a temporal con-
volutional network derived from WaveNet [26] for neural binaural
rendering of speech with a sample rate of 16 kHz, synthesizing
two-channel audio from mono input and listener position. Leng et
al. [27] proposed BinauralGrad, a two-stage diffusion-based gener-
ative network that conditions on positional information to convert
mono audio to binaural, outperforming WarpNet. LLuis et al. [28]
developed Points2Sound, a model leveraging the HDemucs archi-
tecture [20], combined with three-dimensional point clouds to gen-
erate binaural audio from mono sources, demonstrating effective
spatial audio synthesis for immersive applications.
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While BSS and binauralization are well-researched areas, im-
mersive mixing of music is subject to artistic intent. Neverthe-
less, studies such as [29] have found consistent instrument posi-
tions across award-winning immersive mixes, with rhythmic and
bass elements centered, lead vocals in the front, and harmonic in-
struments placed wider. These consistent positions across samples
motivate us to explore a combined approach to binaural upmix-
ing in favor of the two separate processes of source separation and
subsequent blind binauralization.

This paper presents a data-driven binaural upmixing method,
which leverages recent advances in BSS and binauralization to de-
velop an end-to-end approach using the HDemucs architecture –
referred to as Neural Binaural Upmixer (NBU). Audio examples
processed by NBU are made available and can be accessed on the
Audiolabs website1.

The structure of the paper is as follows: Section 2 presents
the problem formulation, Section 3 covers the network architec-
ture and training methods, Section 4 details the data used in this
study, Section 5 presents and discusses the results, and Section 6
concludes the paper.

2. PROBLEM FORMULATION

In traditional stereo, individual recordings, also known as stems,
are placed horizontally between two speakers by amplitude pan-
ning [1]. In contrast, binaural audio leverages spatial cues char-
acteristic of the human auditory system to position these stems at
a given point in space within a three-dimensional sound field [1].
Therefore, the aim of a NBU is to position the composite sound
sources of a given stereo mix within a three-dimensional sound
field based on positional data in the stereo mix while maintaining
the timbral characteristics and fidelity of the original mix.
In this work, a stereo signal sL,R ∈ R2×N is defined as a mixture
of M amplitude-weighted mono signals s ∈ R1×N of length N
samples as,

sL,R =
M∑

m=1

smA(θm), (1)

where A(θm) represents an amplitude panning matrix that weights
the amount of signal sm that is distributed to left and right audio
channels depending on a given panning angle θm. Expanding (1)
to the binaural use case gives us,

s̃c =
M∑

m=1

sm ⊛ Hc(θm, φm, dm) for c ∈ {L, R}, (2)

where ⊛ denotes the convolution operation and Hc(θm, φm, dm)
is the Head-Related Impulse Response (HRIR) corresponding to
the position of source m for the left (L) and right (R) ears with
elevation angle φm and the distance dm.

The proposed NBU represents some model F , in this study a
DNN, that generates an output ŝL,R ∈ R2×N from a short segment
of a stereo mix sL,R, using only the implicit spatial information in
the original stereo mix, that approaches a binauralized mix, i.e.,
ŝL,R = F (sL,R) approaches s̃L,R = [s̃L, s̃R].

1https://www.audiolabs-erlangen.de/resources/
2024-DAFx-Neural-Binaural-Upmix

3. PROPOSED METHOD

3.1. Model Architecture

Based on its prior use and performance in both source separa-
tion [20] and binauralization [28], HDemucs was chosen as the
base architecture. The original and modified HDemucs are trained
and compared. Changes to architecture are motivated by the out-
come of an ablation study by Pons et al. [30] to improve the up-
sampling output of a reduced Demucs architecture. Autoencoder
architectures, as used in HDemucs, are known to produce tonal
and filtering artifacts during upsampling [31]. Pons et al. found
these can be alleviated by disabling the biases in all convolution
layers, adopting a higher sampling frequency to counteract high-
frequency attenuation, and deactivating the Gaussian Error Linear
Unit (GELU) activation function in the most external layers [30].
We were able to reproduce these findings for the full HDemucs
architecture by feeding a sine signal into an untrained and ran-
domly initialized network, allowing for the spectral influence of
the network architecture on the inferred output to be assessed. In
Figure 2, it can be seen that for the original architecture spectral
replica of the sine wave at 10 kHz, 11 kHz, 12 kHz, 13 kHz, and
23 kHz exist, whereas the modified architecture shows these spec-
tral lines reduced by up to 10 dB while the original sine wave is
preserved. The checkerboard patterns are typical for autoencoders
using transposed convolution layers [30].

The modified HDemucs architecture designed for this study is
defined by the following changes:

• Based on the recommendations in [30], the GELU activa-
tion functions in the most external layers and the biases in
each convolutional layer were deactivated, which is shown
in Figure 1. The sample rate is set to 48 kHz.

• The input chunk size is lowered to 16 384 (from 441 000),
indirectly increasing the network’s capacity by using less
audio data as input frame, which allows for contextual pro-
cessing. During preliminary testing, it was found that using
even smaller chunk sizes produced substantially reduced
subjective audio quality.

• A Long Short-Term Memory (LSTM) is added to the fourth
layer shown in Figure 1, which was found to improve spa-
tialization during preliminary subjective evaluation.

• The number of estimated outputs was set to one.

• Normalization was deactivated, which was based on the
preliminary objective evaluation that revealed an unstable
signal level at the output due to the use of smaller chunk
sizes.

3.2. Objective

The original HDemucs was trained to minimize the L1-norm be-
tween the predicted and target waveform, which enforces a strict
adherence to the time-domain target and its absolute phase. How-
ever, this objective did not produce the desired acoustic quality
for the NBU. Instead, the commonly used spectra-based loss func-
tions Spectral Convergence and Spectral Log-Magnitude are used
[32, 33].

Spectral convergence (ℓSC) quantifies the difference between
the magnitudes of the spectra from the Short-Time Fourier Trans-
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Figure 1: Representation of the compressed residual branches that
are added to each encoder layer reproduced from [20] with i mark-
ing the individual layers of encoder and decoder. For the 4th, 5th
and 6th layer, a BiLSTM and a local attention layer are added.
GELU layers marked with ∗ of encoder and decoder are replaced
with Identity layers for i = 1.
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Figure 2: Spectrum of a 1 kHz sine wave after random initializa-
tion for original and modified architecture.

form (STFT) of a given target and predicted signal [32] as,

ℓSC(ŝ, s̃) =
∥ |STFT(s̃)| − |STFT(ŝ)| ∥F

∥ |STFT(s̃)| ∥F
. (3)

Spectral log-magnitude (ℓSM) quantifies the difference be-
tween log-magnitudes of the spectra from the STFT of a given
target and predicted signal [32] as,

ℓSM(ŝ, s̃) =
1

NS
∥log(|STFT(s̃)|)− log(|STFT(ŝ)|)∥1, (4)

where || · ||F is the Frobenius norm, || · ||1 is the L1-norm, and NS

is the number of STFT frames [32]. ℓSC and ℓSM are averaged over
channels and batches.

As phase is an essential aspect of binaural audio, a phase loss
component is also introduced. Leng et al. [27] proposed a phase
loss function that measures the phase discrepancy between a given
target and predicted signal across frequency bins from the real ℜ
and imaginary ℑ part of their complex frequency domain repre-
sentations such that

ℓP(ŝ, s̃) =

∣∣∣∣∣arctan
(
ℑ(ŝ)
ℜ(ŝ)

)
− arctan

(
ℑ(s̃)
ℜ(s̃)

)∣∣∣∣∣. (5)

To ensure stable estimation, the phase loss function only eval-
uates frequency bins in the STFT that have a magnitude greater
than 0.1 [27]. The phase differences are averaged over bins, chan-
nels, and batches.

The final loss for training aggregates spectral convergence,
spectral log-magnitude, and phase loss as

ℓ(ŝ, s̃) = ℓSC(ŝ, s̃) + ℓSM(ŝ, s̃) + ℓP(ŝ, s̃). (6)

As the loss terms lie in a similar range, they were weighted equally.
To minimize the influence of the STFT processing, the random-
resolution approach from [32] is utilized. During each loss calcu-
lation, this method randomly chooses the frame size, window type,
and hop size from a default set of values as introduced in [32].

3.3. Training

Three networks were trained on eight NVIDIA A100 GPUs with
ℓ(ŝ, s̃) using the Adam optimizer with a learning rate of 0.001 and
an exponential decay of β1 = 0.9, β2 = 0.999, ϵ = 1−8 and
weight decay of 2 · 10−6. In all cases, a maximum runtime of 24
hours and early stopping with a patience of 20 epochs was used.
Two different datasets, outlined in Section 4.1, were used. NBUS ,
utilizing the Studio dataset. NBUC and NBUC+ were trained on
the Cambridge MT dataset. For NBUC+, silence was added to the
training data as described in Section 5.1.

4. EXPERIMENTAL SETUP

4.1. Datasets

In this study, two audio datasets were utilized: Cambridge MT [34]
and Studio Mix. The Cambridge MT dataset consists of more than
500 professionally recorded songs for which all single-track stems
are available, including more than 15 000 mono and stereo single
source tracks with a sample rate of 44.1 kHz. The audio tracks are
primarily supplied raw, without additional effects.

The Studio Mix dataset consists of 30 hours of studio-
produced music mixed for a 9.1.4 speaker setup of diverse genres
(Pop: 24.5%, Electronic: 16.2%, Jazz: 13.5%, Classical: 12.3%,
Hip-Hop: 12.2%, Country: 12.1%, Rock: 9.2%). This dataset
provides professionally mixed and mastered immersive mixes.

Two datasets are created from these datasets under the assump-
tion that the sole difference between the stereo and the immersive
binaural mix is the spatial processing techniques employed. There-
fore, both stereo and binaural mixes are derived from a common
immersive mix, employing amplitude panning and a generic bin-
auralizer for the stereo and binaural versions, respectively. The
following section explains the data processing in detail.

4.2. Data Processing

The Cambridge MT dataset is employed to create a synthetic
dataset featuring randomly chosen sources, positions, and aug-
mentations. This dataset serves as a benchmark for comparing
against fully mixed songs in the Studio Mix dataset. The compar-
ison aims to assess the DNN’s utilization of musical information,
like common rhythm, pitch, and phrases, which are only present
in the Studio Mix dataset. The results are discussed in Section 5.
To construct the Cambridge MT dataset, the stereo and binaural
excerpts are generated through the following steps:
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Table 1: Positions of the fixed weights for the soft-panning down-
mix, derived from loudspeaker positions of the ITU standard 7.1
configuration [37] and weighted by [38] with g = 1√

2
. Weights

are placed on a sphere with unit radius.

Speaker C FL FR SL SR SBL SBR

Azimuth 0 -30 30 -90 90 -135 135
Weight L 0.5 g 1− g 1 0 g 1− g
Weight R 0.5 1− g g 0 1 1− g g

1. Excerpt Selection and Augmentation: A 10-second non-
empty excerpt was randomly selected from the available
stems. This segment undergoes augmentation with a 50%
probability, where two effects, such as Reverb, Chorus,
Compression, Delay, Phaser, and Distortion, were applied
using Pedalboard [35]. All parameters were randomized to
lie within the default value and zero.

2. Combination of Excerpts: Multiple excerpts were con-
catenated to create continuous audio tracks of one-minute
length.

3. Spatial Positioning: The tracks were assigned random po-
sitions with −180◦ ≤ θ ≤ 180◦ and 0◦ ≤ φ ≤ 90◦.
Steps 1-3 are repeated 5 times to yield 5 augmented audio
sources, each associated with a distinct spatial position.

4. Binauralization: The audio was binauralized based on
the positional metadata using a reference proprietary bin-
aural rendering solution consisting of HRTF convolution
and reverb. We propose that the binaural rendering solu-
tion can be considered a black box in this use case, and
as the process is time-invariant, and the same HRTFs are
always used, any good quality binauralizer using appropri-
ately pre-processed HRTFs (see [36]) should be sufficient.
This binaural mix serves as the target output for the DNN.

5. Downmix: A stereo version was created from the mix us-
ing the positional metadata and a soft-panning downmix al-
gorithm, which linearly interpolates weighting coefficients
for each source from a set of fixed weights, as shown in Ta-
ble 1. The final output is the summation of all downmixed
signals, normalized to ±1 to prevent clipping. This stereo
downmix is the input vector for the DNN.

5. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the NBU is assessed both objectively, through
comparison of spectral features and source position estimation,
and subjectively with a listening test (see Table: 2 for an overview
of all evaluated conditions). The mono sources used for predicted
azimuth estimation, as well as the music excerpts used for spectral
comparison and subjective tests, are defined as:

Mono Sources: Four 20 s excerpts of the same song from the
MUSDB18HQ dataset containing drums, vocals, bass, and others,
mixed to mono.

Music: In a preliminary subjective listening session, five 10 s
excerpts of songs from a library of 80 immersive studio mixes from
different genres were selected for their extensive utilization of spa-
tial effects like spatial panning and reverberation. It is important to
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Figure 3: Single source azimuth estimation of the output of all
NBUs for each source, position and network. The blue line indi-
cates the target position.
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Figure 4: Average difference in long-term average spectra over all
music items for all trained networks compared against the binau-
ral reference. Negative values indicate a loss of energy compared
to the reference and vice-versa.

note that these songs were not included in training dataset. Binau-
ral reference and stereo downmix are rendered according to Sec-
tion 4.2, and the files are subsequently normalized to K-weighted
−20LUFS.

5.1. Spectral Differences

During training, it was found that introducing silence to the train-
ing data reduces tonal artifacts while also decreasing overall output
energy at higher frequencies. For the training of NBUC+, ran-
domly positioned silence segments of 3000 samples were inserted
into sections of the chunk. To avoid signal discontinuities, half of a
hamming window 100 samples in length was used to crossover the
transition. This additional silence was found to be a good trade-off
between tonal artifacts and loss of high-frequency audio content.
In Figure 4 it can be seen that NBUC+ exhibits a loss of energy
at frequencies between 9 kHz and 18 kHz of up to 8 dB/Hz. In
contrast, NBUC deviates only up to 5 dB/Hz, while for this net-
work, the tonal artifacts are perceived loudly. As the strong tonal
artifacts are perceived as far more disturbing than the loss of high-
frequency audio content, NBUC is dropped in favor of NBUC+

for further evaluation. NBUS was trained without added silence as
this resulted in little tonal artifacts already while preserving high-
frequency content well, although it deviates from the reference up
to 6 dB/Hz in the region of 9 kHz to 14 kHz.
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Table 2: The six conditions of the listening test and their creation process.

Condition Description

Binaural
Reference (Ref)

Studio-produced 9.1.4 Dolby Atmos mix binauralized with speaker positions according to the Dolby Atmos layout [39].

Binauralized
Downmix (BD)

Studio-produced 9.1.4 Dolby Atmos mix downmixed using the soft panning downmix with speaker positions using the Dolby Atmos
layout [39]. The two-channel output is then binauralized, with the left and right channel positioned at θ = ±45◦ and φ = 0◦.

Halo Upmix The downmix is processed by Halo Upmix, a commercially available upmixer designed to take a stereo, or surround, mix and create
a higher channel count upmix of up to 7.1.4 while maintaining the spatial balance and image of the original mix and is used as
a baseline. A preset designed for maximizing the spaciousness of musical content was used to define the upmix parameters. The
upmixed output is binauralized with speaker positions according to the Dolby Atmos layout [40].

NBUS Modified HDemucs architecture trained on studio-produced 9.1.4 music.
NBUC+ Modified HDemucs architecture trained on Cambridge MT dataset with added silence in the dataloader.

5.2. Localization Analysis

The NBU’s spatial rendering accuracy is quantified by estimating
the perceived azimuth of individual sources, utilizing the proba-
bilistic model proposed by May et al. in [41]. The framework is
based on supervised learning of azimuth-dependent binaural fea-
ture maps using Interaural Time Differences (ITDs) and Interaural
Level Differences (ILDs) estimated from a binaural signal. It ap-
proximates the human auditory system using a gammatone filter
bank, half-wave rectification, and low-pass filtering [41]. The lo-
calization model is restricted to the frontal horizontal plane; con-
sequently, the angular range of the test sources was limited to
−90◦ ≤ θ ≤ 90◦, and evaluation is performed for up to four
simultaneous sources.

Single Source: The four mono sources are individually placed
within the defined acoustic scene, which is rendered using the soft-
panning downmix and subsequently inferred by the networks. In
Figure 3, it can be seen that NBUS exhibits step-wise positioning
of sound sources, while NBUC+ closely follows the target posi-
tion. This can be attributed to the discrete number of loudspeaker
positions in the Studio Mix dataset, limiting the network’s ability
to place sources in between these positions. In contrast, NBUC+

was trained with sources placed in the entire azimuth range, which
allows for higher spatial rendering resolution, as shown by the
smaller mean absolute angle difference (Table 3).

Multiple Sources: Two to four simultaneously playing
sources are placed within the acoustic scene at random positions,
maintaining a minimum distance of 10 ◦ between all sources to
allow for source identification in the estimation analysis. Each
source is used up to once per scene. One hundred scenes are ren-
dered for two, three, and four sources, and the distance between
the actual and estimated position for each source is calculated. In
Table 4, it can be seen that the mean error of NBUS remains con-
stant while the mean error of NBUC+ doubles from four to one
source. This correlates with the number of sources present in the
training data, as for NBUS fully mixed songs are used and for
NBUC+ often only one to two sources are playing at a given time.

The analysis suggests that, at least for up to four sources in
the frontal hemisphere, both NBU are capable of independently
positioning each source within, on average, a positional error of
11.3 ◦ or less from the expected source position.

5.3. Subjective Analysis: Listening Test

Multiple approaches to upmixing and binauralization of stereo
content are described in Table 2. This includes Halo Upmix [42]

Table 3: Mean and standard deviation of absolute difference to
target azimuth in degrees for all networks per source type and for
all mono sources.

Source Drums Vocal Other Bass

NBUS 9.2±6.6 9.6±7.7 12.3±8.7 8.6±5.5
NBUC+ 5.0±4.9 4.2±5.0 4.8±4.4 4.4±4.7

Table 4: Mean and standard deviation of absolute difference to tar-
get azimuth for all networks for one to four simultaneous sources.

Sources One Two Three Four

NBUS 10.0±7.1 11.1±7.8 11.5±8.4 11.3±9.1
NBUC+ 4.6±4.8 7.0±8.6 6.5±7.0 9.1±7.9

that was used as a baseline. These approaches were compared in
two separate listening tests to assess spatial attributes and overall
audio quality using WebMUSHRA [43].

The first listening test was taken by seven expert listeners, who
either work in binaural and/or are expert binaural listeners. The
listening test was structured in two phases. Phase I considered
the spatial attributes ‘spatial clarity’ and ‘spaciousness’ as used in
prior work [44, 45], the descriptions for each attribute are defined
in Table 5. The subjects were asked to rate all conditions for the
given attribute on a scale between 0 and 100, labeled less and more,
respectively. Listener judgments were purely comparative, as no
hidden reference was provided. Phase II of the listening test was
a standard MUSHRA test considering overall audio quality. The
results are depicted in Figure 5.

For all statistical tests, the significance level is set to α ≤ 0.05.
Results of a Shapiro-Wilk test conclude that the data is not nor-
mally distributed. Therefore, the data is analyzed using the
Kruskall-Wallis test, which shows statistically different groups ex-
ist in each attribute (spatial clarity: p = 5.69 × 10−17, spacious-
ness: p = 8.86 × 10−17 and audio quality: p = 1.36 × 10−16).
A follow-up Dunn-Bonferroni test is performed to analyze the
upmix approaches pairwise. For spatial clarity, the reference is
rated significantly better than other approaches, and NBUC+ sig-
nificantly worse than NBUS (p = 2.81 × 10−4). No signif-
icant differences are found between NBUS , BD, or Halo. The
reference is rated most spacious with a statistical difference from
all others, while no differences can be found between BD, Halo,
and NBUC+. NBUS is rated significantly more spacious than all
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Table 5: Attribute description for Phase I.

Attribute Description

Spatial Clarity Impression of how clearly different elements in a
scene can be distinguished from each other, and how
well various properties of individual scene elements
can be detected.

Spaciousness Describes how much the sound appears to surround
you.

approaches except the reference (BD: p = 9.15 × 10−3, Halo:
p = 9.79 × 10−3, NBUC+: p = 4.47 × 10−7, and Reference:
p = 8.95 × 10−2). The reference is rated significantly better for
audio quality, while no significant differences are observed be-
tween Halo and BD. NBUC+ is rated worst with statistical sig-
nificance (p = 1.55× 10−4).

A second test with naive binaural listeners was performed to
give insight into the performance of NBUS and the impact of neu-
ral upmixing for naive listeners. Based on feedback from the first
test, the scales were adjusted to be in a range of -50 to 50 with
labels provided as [-50 -30]: Much Worse, [-30 -10]: Worse, [-10
10]: Same, [10 30]: Better, [30 50]: Much Better. Of seventeen
participants, five had to be excluded due to inconsistent identifi-
cation of the hidden reference. In Figure 6, it can be seen that
NBUC+ performed worst for all attributes, and there is only a
slight trend to prefer the reference in spaciousness. The remain-
ing conditions were rated comparably.

Similar to the first listening test, the data is analyzed using the
Dunn-Bonferroni as data is not normally distributed. NBUC+ is
rated worst (p ≤ 7.4 × 10−13) in spatial clarity, while no sig-
nificant differences are found between all other conditions. Re-
garding spaciousness the reference is rated significantly better than
other approaches (p ≤ 1.7 × 10−2) and NBUC+ is rated worst
(p ≤ 8.9 × 10−4), while no significant differences are found be-
tween BD, Halo, and NBUS . The reference is rated significantly
better than all other conditions except NBUS (p ≤ 3.2 × 10−2)
with respect to audio quality. Furthermore, NBUC+ is rated as
performing significantly worse (p ≤ 1.3× 10−7), while there are
no significant differences between BD, Halo, and NBUS . The ab-
sence of differences in spatial clarity between the reference and
other methods motivated a detailed examination of individual out-
comes. It was observed that participants who favored the reference
also tended to prefer NBUS over BD and Halo. The lack of head
tracking, which is known to improve the externalization, especially
for frontal and rear sources [46], may have been a contributing fac-
tor for naive binaural listeners perceiving little difference between
the conditions and is a topic for future research.

The results of the binaural expert listening tests show sig-
nificant improvement in spaciousness and a trend towards more
spatial clarity with small quality deterioration for NBUS relative
to all other approaches. These results could not be reproduced
with naive listeners, which could possibly be due to difficulties
for naive listeners in rating spatial attributes. Furthermore, the
absence of head tracking might amplify the perceived similarity
across all methods. While the objective evaluation of Section 5.2
suggested NBUC+ to be more precise in spatial positioning than
NBUS , NBUC+ falls behind in all subjective evaluation, which
is possibly due to the notable loss in high-frequency content, as
discussed in Section 5.1.
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NBU C+
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Figure 5: Listening test results for binaural expert listeners.
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Figure 6: Listening test results for naive listeners.

6. CONCLUSION AND FUTURE WORK

We presented a data-driven approach to binaural upmixing of
stereo content. The key contributions of this work include an end-
to-end approach to binaural upmixing, a transfer of source separa-
tion to binaural upmix domain for the HDemucs architecture, and
the objective and subjective analysis of neural networks trained
with two different datasets. While training with a synthetically
constructed dataset improved the network’s accuracy in position-
ing sources in space, training with professionally mixed immer-
sive music, for which instrument positioning is more consistent,
yielded significantly higher subjective performance in two listen-
ing tests.

The resulting end-to-end upmixing approach can effectively
transform stereo into immersive binaural as it shows the capability
to position up to four simultaneous sources within, on average, a
positional error of 11.3 ◦ or less from the expected source position.
It also demonstrates a significant improvement in spatialization for
headphone playback as perceived by expert binaural listeners, al-
beit with a slight compromise in audio quality, which shows an
NBU could enhance the large body of legacy content. Notably,
these enhancements were not perceptible to naive listeners, poten-
tially due to the absence of head tracking and possible difficulties
for untrained listeners to rate spatial attributes.

For future work, it would be worthwhile exploring real-time
capable architectures to facilitate the integration of head-tracking,
which could further enhance perceived spaciousness. Another po-
tential area of exploration is to extend the application domain to
non-musical content, such as movie soundtracks, thereby broad-
ening its applicability.
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