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ABSTRACT

Loudspeaker equalization is an established topic in the literature,
and currently many techniques are available to address most prac-
tical use cases. However, most of these rely on accurate measure-
ments of the loudspeaker in an anechoic environment, which in
some occurrences is not feasible. This is the case, e.g. of custom
digital organs, which have a set of loudspeakers that are built into a
large and geometrically-complex piece of furniture, which may be
too heavy and large to be transported to a measurement room, or
may require a big one, making traditional impulse response mea-
surements impractical for most users. In this work we propose
a method to find the inverse of the sound emission system in a
reverberant environment, based on a Deep Learning dereverbera-
tion algorithm. The method is agnostic of the room characteristics
and can be, thus, conducted in an automated fashion in any en-
vironment. A real use case is discussed and results are provided,
showing the effectiveness of the approach in designing filters that
match closely the magnitude response of the ideal inverting filters.

1. INTRODUCTION

The accurate reproduction of audio signals through loudspeaker
systems has been a longstanding pursuit in audio engineering. Vari-
ations in transducer characteristics, enclosure designs and materi-
als introduce deviations from the ideal response, leading to col-
oration, distortion, and a loss of fidelity in the reproduced sound.
To address these challenges, the field of loudspeaker equalization
has seen significant advancements over the years and is now very
mature.

Early methods for loudspeaker equalization relied on electri-
cal networks to compensate for inherent transducer deficiencies.
However, with the advent of digital signal processing, a wide range
of sophisticated equalization techniques has emerged, offering pre-
cise control over the frequency and/or phase response, transducer
distortion, directivity, etc.

Most equalization techniques rely on an accurate measure-
ment of the device, which must be done in acoustically anechoic
or semi-anechoic environments. This is generally not a problem,

Copyright: © 2024 Silvio Osimi et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

294

Leonardo Gabrielli

Universita Politecnica delle Marche, Ancona, Italy
l.gabrielli@univpm.it

Stefano Squartini

Universita Politecnica delle Marche, Ancona, Italy
s.squartini@univpm.it

since loudspeakers are generally designed by companies which
have the facilities for conducting measurements on prototypes and
then produce them serially.

However, there are different use cases where accurate impulse
response measurements inside an anechoic room are not feasible.
This may be the case, e.g. of amateur loudspeaker projects, or
workshops building site-specific loudspeakers directly in site. An-
other use case, that will be taken as use case in this paper, is the
manufacturing of large custom digital church organs. These in-
clude a sound emission system based on a set of loudspeakers that
must be carefully tuned, but the size and weight of such instru-
ments require large measurement rooms and complex transporta-
tion procedures. Furthermore, the wooden cabinet may be custom-
made and assembled by artisans at the final destination (e.g. the-
ater or church), making the measurement impossible. Unfortu-
nately, performing IR measurement of the loudspeakers in a rever-
berant environment makes it difficult to separate the response of
the loudspeakers and the cabinet (which reflects and filters sound
waves propagating from the loudspeakers) from that of the room.

1.1. Prior Art and Scope of the Work

A plethora of equalization methods can be found in the literature
that require anechoic measurement of the system to be inverted
[1]. Measurements can be conducted by assuming the system to be
either linear or non-linear. In the first case the IR (or its frequency-
domain transform) is sufficient to provide an exact mathematical
description of the system. The validity of this assumption must be
questioned case by case, but for the sake of simplicity, in many
works this is assumed true. Indeed, in this work, we will consider
the systems under test linear.

The problem of non-anechoic measurement of loudspeakers
has been addressed less often. Theoretical foundations of acoustic
measurements in reverberant environments were laid by Richard
Heyser [2], later leading to time-selective techniques [3]. These
techniques are based on merging a near-field measurement at low
frequency and a time-windowed far-field measurement at high fre-
quency. Although being scientifically solid, there are several rea-
sons why such a method is not applicable to our scenario. First
of all, it is not automatic, but requires at least two separate mea-
surements (or more, for ported speakers), with two microphone
positions. It also requires a fair amount of knowledge in acous-
tics to figure out the right position for the microphones to be posi-
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Figure 1: Diagram of the problem setting. Digital equalizing filters
@:[n] must be designed in order to invert the loudspeakers IR s;(t),
while leaving the room impulse responses (RIR) A, ; () unaffected.
The effect of the room must be removed to estimate viable filters.

tioned, partly subject to room size and properties. Merging the two
measurements is not automatic as well, thus the frequency overlap
region where both measurements are still valid and a match must
be found manually. Finally, this test technique has been devised
for on-axis measurement of simple loudspeakers. Whenever com-
plex sound sources have to be measured at some specific point in
space, as will be in our use case, things may not work as expected.
Later approaches have been proposed based on the same premises
[4, 5, 6]. Another relevant work to the field of room and loud-
speaker equalization can be found in [7], where a very insightful
introduction to the topic is given. However, the method also in-
verts the room together with the loudspeaker, which we are not
interested in.

The assumptions behind this work follow: (1) no prior knowl-
edge of the room type and size, therefore the method must be gen-
eral; (2) we leave all the decisions to an automatic system, there-
fore no human intervention or subjectivity must be involved; (3)
we deal with off-axis loudspeaker measurement; (4) we require the
system to work on swept sines to perform the measurement once
and estimate the optimal equalization filters with a well-known ref-
erence method. Following these assumptions, we propose an auto-
matic system to equalize a loudspeaker system in a non-anechoic
environment based on a blind dereverberation algorithm. The al-
gorithm requires no prior knowledge of the room size and charac-
teristics and can, thus, be performed automatically during the final
deployment of the sound system, being entirely automated except
from the positioning of the measuring microphones in the space.
To the best of our knowledge no prior work proposed a method to
work in such a generic setting.

The remainder of this paper is organized as follows: Section 2
describes the proposed method for equalization in reverberant en-
vironments. Section 3 describes in more detail the use case which
provides motivation for this work. Section 4 provides a description
of the experimental setup for the specific use case, while Section 5
reports the results and discusses them. Finally, Section 6 provides
concluding remarks and outlines directions for future research.

2. PROPOSED METHOD

Let us first introduce the setting of the problem, depicted in Figure
1. A loudspeaker or a system of multiple loudspeakers is fitted in
aroom. The IR of the loudspeakers s;(t) is unknown and its mea-
surement is affected by the room impulse responses (RIR) h;; ()
between the sources and the measurement microphones, which
capture the signals m;(t). Digital filters g;[n] of length L can be
applied before the digital to analog conversion (DAC) to equalize
the s;(t). Please note that the discrete-time index will be indicated
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Figure 2: Diagram of the proposed method.

as [n], while the continuous time as (¢). An IR measurement is
possible for each loudspeaker-microphone pair, e.g., by using a
sine sweep as input z[n] according to the method from [8]. How-
ever, the resulting IR will be the convolution of the loudspeaker
and the RIR.

Without a priori knowledge of the room, it is not possible to
obtain a direct estimate of the loudspeaker response. However, as-
suming that the microphones are close to the loudspeakers, a dere-
verberation algorithm should be able to separate the effects of the
room, that are expected to arrive much later than the direct signal
from the loudspeaker or the first reflections (which may be partly
due to the loudspeaker cabinet itself, as will be in the described
use case).

Please note that the method is not particularly effective when
the early reflections take longer than L samples to get into the
microphone, since in that case the loudspeaker IR can be separated
from room IR by windowing the first L samples and computing the
inverse. Therefore in the target use case some of the room walls or
obstacles are quite close to the loudspeaker.

2.1. Overview

The proposed method is depicted in Figure 2 and is divided in two
stages: a filter design stage, and the actual real-time audio process-
ing stage. A swept sine measurement is first conducted through the
I loudspeakers in the room and a matrix of IRs hys(¢) is obtained
from the J microphones. These are processed through a derever-
beration algorithm to cancel the effect of the room and obtain an
estimate of the loudspeakers IRs that can be fed to a method to
compute inverting filters. The method employed in the rest of the
paper is the one from Kirkeby [9], which finds the optimal inverse
filters in the Least Square Error (LSE) sense. Although the method
is not recent, is regarded as a standard method for audio equaliza-
tion in the scientific literature and is well known, making it suitable
to allow us investigating the potential of the proposed method.

Once equalizing filters have been designed using Kirkeby’s
method, they can be employed in the application to equalize the
loudspeakers. At this stage any digital audio content c[n] is fed
to the equalizers and then to the loudspeakers. The room impulse
response will alter the audio content but the effect of the loud-
speakers should be compensated by the digital filters.

2.2. Deep Dereverberation Algorithm

Several methods exist in the scientific literature for speech derever-
beration [10, 11] and (less often) music dereverberation. Among
the numerous methods one stands out for the wide adoption as a
reference and is based on regular Digital Signal Processing (DSP)
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techniques, which is commonly referred to as Weighted Prediction
Error (WPE) [12, 13].

WPE computes a filter to estimate late reverberation from past
observations and subtracts this part from the speech affected by re-
verberation, to obtain the target speech. The filter design is based
on a variance-normalized linear prediction, suitable to identify cor-
relations in the signal that are manifestation of the room reflec-
tions. The algorithm relies on a prediction delay which, unfortu-
nately, poses limitations to the shortest delay that it can estimate,
and thus to the separation between early and late reflections (to
be removed). WPE will be considered as a baseline method, and
compared, in the evaluation phase, to a more advanced Deep Neu-
ral Network (DNN)-based method.

Methods based on DNN are more flexible in tasks such as
dereverberation [14, 15, 16] (i.e. target speech prediction), speech
enhancement or speaker diarization. However, these suffer the
common issue of being black-boxes. DNN methods leveraging
WPE have been also envisioned [17, 18], with [18] being one of
the latest incarnation and, according to its authors, it addresses
several shortcomings.

The method selected for this work, from now on referred to
as DNN-FCP, is based on estimating the direct-path clean signal
using a DNN and then approximate the RIR with a forward filter.
This procedure is called Forward Convolutive Prediction (FCP)
and is introduced in [19]. It is worth to discuss the difference
between WPE and DNN-FCP.

WPE computes a K -tap inverse linear filter to estimate the late
reverberation at the current frame from the past observations. The
estimated late reverberation is then subtracted from the mixture for
dereverberation, i.e. for a single-speaker scenario,

Swee(t, /) =Y (6. /) — (DY (- A0, M)
where g(f) € CX is a K-dimensional filter, Y (¢, f) is the last
frame of the recorded mixture in the time-frequency domain, A (>

1) a prediction delay, and Y (¢, f) = [Y (¢, f), Y (t=1, f),..., Y (t—

K +1, f)]". Under certain assumptions, WPE computes the max-
imum likelihood estimation filter through the minimization prob-
lem
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where ) is the time-varying zero-mean PSD of the signal. Unfor-
tunately, this objective does not have a closed-form solution and
a solution must be iteratively found by minimizing alternatively
either of the two objectives.

DNN-based works aim at estimating the PSD with a DNN
model, therefore simplifying the objective function and allowing
for a closed-form solution [17]:

Yt )~ s Y- AP
Att, f)

argmin Z
s(f) t

) 3

where A(t, f) is provided by a dedicated DNN. The dereverberated

result Span (£, f) is obtained similarly to Eq. 1. A step further can
be obtained by also estimating the target speech with a DNN, thus

removing the delayed ?(t — A, f). Now the problem requires
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estimating the linear filter g( f) that minimizes the following [19]:

g(f) Sow(t. )
At £)

The dereverberation result is obtained as

Srce(t, £) = Y (¢, 1) = (8(/)"Sown(t, £) = Sowx(t, 1)), 5)

argrninz Yt /) - , )

s(f) t

where SDNNb (ta f) = [SDNNb (tv f)?SDNNb (t717 f): ceey SDNNb (ti
K+1, f)]". Please note that g(f)HSDNN(t, f) is an estimate of the

reverberant target speech, and g(f)"Span(t, f) — Sonn(t, f) is
the estimated reverberation of the target speaker. Therefore, FCP
computes a forward filter (hence the name), as opposed to WPE
that computes an inverting filter. The advantage over WPE is mul-
tiple: it is more effective in removing early reflections since the
estimated target speech is not delayed by A; the estimated filter
g(f) is not an inverse filter, therefore the estimation is more accu-
rate in presence of interfering signals [19].

3. USE CASE

In the manufacturing of large digital church organs anechoic mea-
surements cannot always be done. Often, the organ is large and
heavy, and only large semianechoic chambers can host such in-
struments. Furthermore, their transportation to a measurement
room is complex and the risk of scratching or damaging the wood
should be minimized. Finally, these organs can be custom tailored,
therefore each product is different from another. Even if multiple
products share the same sound emission system (amplifiers, loud-
speaker types and disposition), the frequency response may dif-
fer due different shape, size and materials of the wooden cabinet.
As an example: the shape of some wooden parts may reflect the
sound coming from the loudspeakers producing dips and notches
in the frequency response, the different distance from the bench
may alter the time of arrival of different sound waves, the wood
may damp some frequency component, etc. Finally, in large cus-
tom installation the final assembly is done at the venue, therefore
an anechoic measurement is impossible.

When anechoic IR measurement is not viable, the proposed
method may improve the overall sound reproduction quality. In the
rest of the work we shall consider the combined effect of the loud-
speakers and the cabinet as one, and try to distinguish this from the
effect of the room. Please note that the goal of our method is not
to invert the RIR, but only to invert the sound emission system and
make its magnitude response flat. Therefore, once inverting filters
are designed, these are implemented in the organ tone generation
DSP to pre-equalize.

Digital organs have a number of loudspeakers S with different
specifications and positioning. In this work we have employed a
digital organ that is small enough to fit inside a small semianechoic
room, for the purpose of measuring the IRs and have material for
a real-world evaluation of our technique. The organ has six loud-
speakers, in particular two woofers and 2 mid-range speakers.

The target for our equalization algorithm is the organ player,
since the audience of an organ concert will sit far away from the
console, where the effect of the room, or the effect of other loud-
speakers positioned in the space becomes predominant. Anyway,
it would be too hard to equalize for an entire audience or parts of
it, since many measurements should be taken. Therefore we shall
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Figure 3: Magnitude Frequency Response of two of loudspeakers
measured at the left microphone: (a) left midrange, (b) left woofer.

I

Ll vy y. | B,

ﬁk ’ 7 |

[N— ) o e p— |

o) || [__.,,r, e
e e EITETTE

- =

Figure 4: Picture of the organ under test. The loudspeakers IRs are
measured to assess the validity of the method.

consider the position of the organ player ears and thus consider
J=2.

Figure 3 shows the frequency response of two loudspeakers
measured at the left ear of the organ player in the anechoic envi-
ronment of Figure 4. The objective of the work is to equalize these
responses without recurring to their anechoic measurement.

4. EXPERIMENTS

In this work we performed experiments on a synthetic dataset com-
posed of simulated loudspeakers IRs playing through simulated
shoebox-type rooms. Then we move onto the use case provided
by semianechoic measurements of real digital organ loudspeakers,
to verify the effectiveness of the approach.

4.1. Dataset and Training

Differently from other works dealing with acoustics and loudspeaker
equalization, here we need a training dataset for the DNN-FCP
method to be employed to effectively suppress reverberation from
an audio system. In speech dereverberation scenarios, the DNN-
FCP is trained on a large corpus of speech. However, in our work,
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the dereverberation algorithm must remove the reverb from a mea-
surement of the system obtained with microphones. In principle,
the DNN-FCP can work with any time-domain signal, therefore
the IR measured at the microphone could be used to feed the DNN-
FCP. However, from our experiments a DNN-FCP trained on a
speech corpus failed to cancel any reverb, probably due to the un-
seen nature of the IRs and to their extremely short duration.

For this reason, we decided to train the DNN-FCP on a dataset
containing log-sweep signals affected by a number of loudspeakers
and rooms. From early experiments this choice proved more effec-
tive in removing reverb from unseen log-sweeps and it motivated
to construct a synthetic dataset of moderate size. The dataset is
made of log-sweeps signals filtered by synthetic IRs of loudspeak-
ers generated randomly and by synthetic IRs of shoebox rooms
with different parameters, in order to provide enough generaliza-
tion for the network to perform properly on real-world signals.
Specifically, the test signal where dereverberation is performed
during inference is a reverberated version of the loudspeaker signal
coming from the organ described in Section 3, while the training
dataset is generated according to the parameter ranges in Table 1.
More specifically, the loudspeakers have been simulated by assum-
ing their behavior linear. Several lumped elements models exists,
such as the Thiele-Small model [20, 21, 22], however they fail to
entirely characterize the complex frequency spectrum of a loud-
speaker, which is given by the contribution of a large number of
parasitic components, natural modes and complex physical phe-
nomena. For this reason, we opted for a more generic approach
where woofers, mid-range and full-range speakers are character-
ized by a low-pass and a high-pass rolloff, and an operating range
where several complex conjugate poles affect the frequency re-
sponse by cutting or boosting the energy by several dB. With these
constraint we designed IIR filters in Matlab that attempt to mimic
the loudspeakers character, whose IR have been extracted and con-
volved with the sweep signals.

The rooms, instead, have been generated using a widely adopted
Python package, PyRoomAcoustics !. In this case the rooms have
all been designed in a shoebox shape with three different sizes
and RT60, in order to simulate three different kinds of venues,
from a medium room to an auditorium, with different damping.
In all cases the source signal is placed at the coordinates (2 +
L/3,2 + W/3,1.5)m, where L and W are the room length and
width, while the microphones are placed in a circle centered at co-
ordinates (3 + L/3,2 + W/3,1.5), with radius 0.1 m. Although,
in principle, many more degrees of freedom can be devised to in-
crease the dataset size, this dataset was large enough to allow the
DNN-FCP to be trained and to perform dereverberation on sweep
inputs affected by room reverb. The total number of loudspeakers
is 30, while the rooms and microphones are 3 and 8, respectively.

4.2. Training and Test

For the DNN-FCP, we used TF-GridNet [23, 24] as the DNN used
to obtain Spn(Z, f) in Eq. 4. TF-GridNet is a state-of-the-art
model originally developed for speech separation and enhance-
ment. Here we relied on the open-source implementation made
available by the ESPNet-SE++ toolkit [25]>. In our experiments
we used the TF-GridNet configuration that offers the best trade-off
between computational requirements and performance according

! pyroomacoustics.readthedocs.io/
2github.com/espnet/espnet/blob/master/espnet2/enh/separator/
tfgridnetv2_separator.py
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PARAMETER MIN MAX
LOUDSPEAKERS

low-frequency rolloff range [Hz] 100 200

high-frequency rolloff range [Hz] | 10k 20k

nr. of pole pairs 1 30

gain range [dB] -6 +6
ROOMS and MICROPHONES

room size [m] 7x6x2.5 21x18x7.5

RT60 [s] 0.3 0.9

Table 1: Parameters for synthetic dataset generation.

to [24], i.e. the row 7 model in Table XIII of [24], with the excep-
tion that here we used an STFT window size of 32 ms and 8 ms hop
size. For the FCP algorithm we use 3 taps (K = 3 in [19]). TF-
GridNet was trained with the Adam optimizer, a learning rate (1)
of 1073, L2 norm gradient clipping of 1 and batch size 8. The 7 is
halved if no improvement is observed for 5 epochs and early stop-
ping is triggered if no improvement is encountered for 10 epochs.
We used an NVIDIA A100 40GB GPU for the training, which
took ~ 6h. Inference was instead performed on a laptop with a
i7-8750H CPU.

The filters were designed using Kirkeby’s method as imple-
mented by the Aurora plugins °. The FIR filters have length L =
2048 at 48 kHz sampling rate, therefore the FIR group delay is
2.1 ms, which is low enough for real-time applications such as
sound synthesis in a musical instrument. The regularization term
is 8 = 0.01 for the range 50 — 20k H z. The delay A for WPE is
3 frames, which is the most common choice in the literature.

4.3. Metrics

To evaluate the dereverberation algorithms we will employ several
metrics, such as the PEMOQ and the SDR, along with traditional
acoustic descriptors such as the 75, i.e. the time for the signal to
decrease by 20 dB.

PEMOQ is an index proposed in [26], where PEMO stands for
PErceptual MOdel and Q stands for Quality assessment. The in-
dex was conceived for the objective assessment and prediction of
perceived audio quality using an auditory model. At the time of
its introduction it was shown to better predict human judgements
than the more widely spread PEAQ index [27]. We selected PE-
MOQ over PEAQ for its ability to predict wider audio degradation
ranges, i.e. from more severe to smaller impairments and for its
recommendation for music signals in addition to speech signals.
In this paper the PEMOQ scores are provided as real values in the
range 0-1. To calculate the PemoQ metrics we adopted the freely
available toolkit PEASS *.

The SDR, or Signal-to-Distortion-Ratio, is a well-known met-
ric used in various fields to objectively evaluate the validity of
source separation algorithms[28]. Since blind dereverberation can
be seen as a source separation task, where the target signal and the
reverberation are meant to be identified and separated the use of
SDR is licit and widely adopted. Finally, to evaluate the derever-
beration capabilities of WPE and DNN-FCP we also employed the
T5o in octave bands.

3pcfarina.eng.unipr.it/Aurora_XP/
4gitlab.inria.fr/bass-db/peass
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5. RESULTS AND DISCUSSION

In the following we first evaluate the validity of the dereverberation
of swept sines to estimate the loudspeaker IR, and then we pro-
vide results of the equalization of the dereverberated swept sines,
showing that the inverse filters are close to the ones that would be
computed on anechoic measurements.

5.1. Dereverberation Performance

To assess the validity of the dereverberation algorithm applied to
swept sines we compare a set of samples from the dataset, not
seen in the training set of the DNN-FCP. These are obtained from
3 synthetic loudspeakers, with 3 different rooms and 6 randomly
picked microphones, for a total of 12 samples for each case. We
first extracted the T2o decay time for each octave band, showing
how the time gets reduced by WPE and DNN-FCP, as shown in
Table 2. The data shows that the DNN-FCP is far superior than
WPE in reducing the decay, especially at mid to high frequency. It
must be observed that the WPE is bounded by its prediction delay,
therefore the reverb tail cannot be shortened below its threshold.
However, the prediction delay can be reduced if some assumptions
on the geometry of the space and the microphone position can be
made.

To evaluate the effectiveness of the dereverberation from an
audio quality perspective we also use the PEMOQ, and SDR met-
rics [28]. The data is reported in Table 3 and shows the superior
performance of the DNN-FCP. The PEMOQ score is obtained by
comparing the audio to the anechoic source. A score of 1 means
that two audio sources are identical. The SDR score is expressed
in dB (the higher, the better).

Overall, these results show that the DNN-FCP method is far
superior to WPE in removing the reverb tail from the output and -
more importantly - that training a DNN-FCP network with a fairly
small synthetic dataset of swept sines can make it work with swept
sines coming from reverberated measurements. In the next section
we will compare the two dereverberation methods for what con-
cerns spectral coloration and the ability to be used in the proposed
method to design equalizing filters.

5.2. Equalization and Filter Design

By converting the dereverberated log sweep signals to frequency
responses we can obtain equalization filters based on the method
from [9]. We first ran a test with the synthetic loudspeakers, as a
proof-of-concept of the proposed method. The inverting FIR fil-
ters designed with Kirkeby’s method are shown in Figure 5 for
three different loudspeakers. As can be seen, the equalizing fil-
ters designed on the dereverberated IRs are similar to those de-
signed on the anechoic measurement of the loudspeaker. How-
ever, depending on the example and frequency range, the WPE is
sometimes closer to the reference curve than the DNN-FCP. On
the other hand, the DNN-FCP presents a smoother magnitude fre-
quency response.

Figure 6 shows third-octave band plots of the equalized sig-
nals, using the filters in Figure 5(a). As can be seen, in this case the
spectral flatness of DNN-FCP is superior to that of WPE. All the
spectra are obtained by convolution between the anechoic loud-
speaker IR and the equalizing filter. Table 4 provides the MSE
computed for all three loudspeakers from the test set. These re-
sults are computed by convolution between the equalizing filters
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bands (Hz) | 31.5 63 125 250 500 1000 2000 4000 8000 16000 | average [s]

Room1 | 0.76 058 031 039 036 033 030 030 033 0.32 0.40

REVERB Room2 | 1.02 1.02 0.73 060 064 0.65 061 062 062 0.63 0.71
Room3 | 1.37 126 059 092 096 093 080 087 091 0.88 0.95

Room1 | 1.97 035 024 034 028 029 024 026 026 025 0.45

WPE Room2 | 1.80 0.61 040 043 050 039 038 039 039 0.38 0.57
Room3 | 1.69 047 058 047 054 049 045 045 044 045 0.60

Room1 | 0.53 023 095 0.07 005 0.03 001 001 0.01 0.00 0.19

DNN-FCP Room2 | 044 023 0.12 006 003 0.02 001 001 0.01 0.00 0.09
Room3 | 044 023 0.12 006 003 0.02 001 001 0.01 0.00 0.09

Table 2: Average T20 decay times for octave-bands of the reverberated audio signals and the WPE- and DNN-FCP-dereverberated audio
signals. The signals are divided by room (with Room 1 being the one with shortest decay, and Room 3 being the one with the longest
decay). For each room 4 random combinations of loudspeaker and microphone from the dataset are averaged.

REVERB WPE DNN-FCP
PEMOQ | 0.81(0.08) 0.81 (0.09)  0.97 (0.02)
SDR [dB] | 7.97 (3.54) 8.69 (4.16) 17.29 (3.06)

Table 3: Average value of the PEMOQ and SDR (the standard
deviation is reported in brackets).

Anechoic NO-EQ WPE DNN-FCP
Figure 5(a) 1.0 3.5 9.3 2.8
Figure 5(b) 1.0 259 23.0 17.5
Figure 5(c) 0.4 7.9 5.8 5.6

Table 4: MSE referred to third-octave spectra computed after
equalization of the synthetic loudspeaker from Figures 5(a), (b),

(©).

and the anechoic response of the loudspeaker, to simulate the flat-
ness of the spectrum in absence of the room. As can be seen,
the performance of the exact inverse computed using the method
from Kirkeby cannot be matched, however the filters estimated af-
ter dereverberation provide an improvement of several dB over the
case without equalization (except for one case with WPE).

5.3. Real-world use case

The proposed method is finally evaluated on the use case of the
organ loudspeakers. The dereverberation has been carried out with
either WPE or DNN-FCP, and the latter has shown to be signifi-
cantly superior in terms of dereverberation (average 150 = 0.08 s
for DNN-FCP vs. 0.37 s for WPE). The inverting filters are shown
in Figure 7. As can be seen, both WPE and DNN-FCP filters are
close to the reference ones, computed on the anechoic measure-
ment. This seems to confirm the validity of the approach. The
MSE obtained for all approaches are: 15.1dB, 16.5dB, 19.9 dB for
the anechoic, WPE and DNN-FCP cases, respectively. In this case,
the DNN-FCP is penalized by a larger error in the low-frequency
range.

6. CONCLUSIONS

This work proposed a method for equalizing loudspeakers by means

of FIR filters in cases when the anechoic IR cannot be computed.
A reverberated swept-sine signal is dereverberated using two alter-
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native state-of-the-art methods, WPE and DNN-FCP, before com-
puting the inverse filters. We show the idea to be viable using both
methods (with some differences in the results) and the obtained fil-
ters show similar magnitude response to the ones computed from
inversion of the anechoic loudspeakers IR. Our work also shows
that training the Deep Neural Network used by DNN-FCP with a
fairly small dataset of swept sines is sufficient to allow the method
to be adapted to the dereverberation of swept-sine measurements.

This proof of concept is open to future improvements. In prin-
ciple end-to-end methods for dereverberation and filter design can
be envisioned. At the moment methods based on Deep Learning
for the design of equalizing filters have been proposed, however
they are not directly applicable to the problem addressed in this
work [29]. Other methods could be envisioned that adapt to the
environment and invert it by means of Differentiable Digital Sig-
nal Processing (DDSP) techniques [30]. In this case the techniques
can be employed similarly to a system inversion problem using
adaptive filters [31] removing the need for swept-sine measure-
ments, but requiring a microphone always available during adap-
tation and at the position to be equalized.
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