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ABSTRACT

Collisions are an integral part of the sound production mechanism
in a wide variety of musical instruments. In physics-based real-
time simulation of such nonlinear phenomena, challenges centred
around efficient and accurate root-finding arise. Nonlinearly im-
plicit schemes are normally ill-suited for real-time simulation as
they rely on iterative solvers for root-solving. Explicit schemes
overcome this issue at the cost of a slightly larger error for a given
sample rate. In this paper, for the case of lumped collisions, an al-
ternate approach is proposed by approximating the contact poten-
tial curve. The approximation is described, and is shown to lead
to a non-iterative update for an energy-stable nonlinearly implicit
scheme. The method is first tested on single mass-barrier collision
simulations, and then employed in conjunction with a modal string
model to simulate hammer-string and slide-string interaction. Re-
sults are discussed in comparison with existing approaches, and
real-time feasibility is demonstrated.

1. INTRODUCTION

Inter-object collisions are among the nonlinear acoustic phenom-
ena that significantly influence the sonic character of various mu-
sical instruments. Certain collisions where contact occurs over a
narrow region could be treated as lumped, e.g: piano hammer-
string [1], xylophone mallet-bar [2] interaction, while others are
generally regarded as distributed, e.g: sitar string-bridge [3], snare
drum wire-membrane [4] interaction. These phenomena are often
modelled by means of a Hertzian contact power law [5]. Partly
owing to the one-sided nature of the nonlinearity, simulating them
numerically in real-time - while preserving system properties crit-
ical in musical instrument simulation like passivity and stability -
is a challenging task [6].

A range of energy-stable time-stepping schemes exists in the
collision modelling literature. At one end of the spectrum we have
explicit schemes [7, 8], where an auxiliary variable is introduced in
order to quadratise the contact potential, which thereby allows the
current system variable and the auxiliary variable to be explicitly
expressed as functions of their previous values. Although this fea-
ture makes these schemes suited for real-time simulation, recent
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analysis [8] has revealed an inherent issue of the energy quadrati-
sation approach: due to the dependency of the numerical energy on
the auxiliary variable, these schemes do not exhibit a unique tra-
jectory in the contact region of their phase-space, which can lead to
increased errors. For example, perceptually significant wideband
noise-like artefacts are produced in the case of a sitar-like config-
uration, suppressing which requires at least 4x oversampling [8].

At the other end of the spectrum lie nonlinearly implicit (NLI)
schemes [6], where the current value of the system variable ap-
pears within a nonlinear implicit function. This leads to a transcen-
dental equation to be solved at each time step, and for this purpose
iterative solvers such as Newton’s method have been traditionally
employed. However, due to the uncertainty in the number of it-
erations, the computational cost of such schemes varies at each
time step, and thus approaches employing iterative solvers are not
well-suited for real-time simulation [7, 8].

Somewhere in between these two extremities lies another ap-
proach: to fix the power law exponent to unity and thereby obtain
a specific non-iterative branched-form update for an NLI scheme
[9]. This has since been adopted in a few case studies involving
lumped collisions [10, 11]. However, such a model does not cover
the full range of compliances involved in musical instruments -
e.g., felt hammers in pianos have a large stiffness range for a given
force range [12], and the measured power law exponent is gener-
ally around 2.5 [1]. In this paper, by approximating the contact
potential curve, this approach is extended to the more general case
of lumped collisions with any valid power law exponent.

2. LUMPED COLLISION MODEL

Throughout the paper, dv and ∂v denote the total and partial deriva-
tives with respect to the variable v, respectively. Consider con-
tact between two objects at positions u1 and u2 at time t, and let
y = y(t) := u1(t) − u2(t). If the contact occurs over a narrow
region, the contact force F can be modelled in the form of a power
law [5] as:

F (y) = −κ
[
y
]α
+
= −∂yV (y), (1)

where the power law parameters κ > 0 and α ≥ 1 depend on
the geometries and materials of the objects that come into contact.
From Hertzian contact theory [5], the exponent α is typically 1
or 1.5. If one includes cases of strongly nonlinear compression
of felts (e.g. kettledrum mallets [13] or piano hammer [14]), then
1 ≤ α ≤ 3 can be considered as a musically relevant range. With
y now interpreted as a compression variable,

[
y
]
+

:= max(0, y)

represents the inter-object compression, and

V (y) =
κ

α+ 1

[
y
]α+1

+
(2)
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Figure 1: Quadratic spline approximation of the contact potential
(left, blue); its derivative (right, red), for α = 2.5 and ∆y =
0.39 yref (N = 3). In both plots, the black dashed line shows the
underlying power law.

is the contact potential.

2.1. Quadratisation of the Contact Potential

Introducing an auxiliary variable ψ, the contact potential can be
re-written [7] as

V =
1

2
ψ2. (3)

From (1) and (3), the contact force can then be written in terms of

ψ and a new gradient variable g := ∂yψ =
√

1
2
κ(α+ 1)

[
y
]α−1

+
as

F = −ψ g, dtψ = g dty. (4)

2.2. Quadratic Spline Approximation of the Contact Potential

In musical instrument modelling, one would typically have an es-
timate of the collision energy range which can be considered as
a reference, say [0, Vref ]. From (2), the corresponding reference
compression range is [0, yref ], where

yref =

[
(α+ 1)Vref

κ

] 1
α+1

. (5)

As shown in Figure 1, we can sample the contact potential curve
at (N + 1) regularly spaced compression values yj = j∆y, j =
0, 1, 2, ...N, ∆y > 0, where N is such that the last compres-
sion value yN ∈ [yref , yref + ∆y], i.e, N =

⌈
yref
∆y

⌉
, where ⌈.⌉

represents the ceiling operator. V can now be approximated in a
piecewise-quadratic fashion as

V̂ (y) =


Vj(y) : y ∈ [yj−1, yj), j = 1, 2, ..., N − 1,

VN (y) : y ≥ yN−1,

0 : otherwise,

(6)

where

Vj(y) = ajy
2 + bjy + cj , j = 1, 2, ..., N (7)

is the jth quadratic segment, with Vj(yj) = V (yj) being the sam-
pled data. For V̂ and its derivative ∂yV̂ to represent a one-sided
nonlinearity, we require both the first quadratic segment V1(y) and
its derivative ∂yV1(y) to pass through the origin. Further, for V̂
to be a continuous function, successive quadratic segments need

to meet at their ‘knots’ {(yj , Vj(yj))}, j = 1, 2, ..., N − 1, and
for V̂ to be at least C1 smooth, the first derivatives of successive
segments need to be equal at their knots. These conditions can be
written as

b1 = c1 = 0, (8)
Vj(yj) = Vj+1(yj), and (9)

∂yVj(yj) = ∂yVj+1(yj), j = 1, 2, ...N − 1. (10)

The design parameter ∆y controls the accuracy of the approxima-
tion - the accuracy is generally expected to increase as ∆y is re-
duced (or equivalently, the number of quadratic segments N is in-
creased). Now, with conditions (8) - (10) imposed, the piecewise-
quadratic approximation V̂ in (6) becomes a quadratic spline ap-
proximation (QSA) of the contact potential. Here we compute the
spline co-efficients {aj , bj , cj , j = 1, 2, ..., N} by adapting the recipe
described for cubic splines in [15] for the case of quadratic splines,
and solving a system of linear equations involving a bi-diagonal
matrix (see companion website 1 for more detail).

One such V̂ and its derivative ∂yV̂ (which is the correspond-
ing linear spline approximation of −F ) are shown in Figure 1. No-
tice that, with only 3 segments, the QSA seems to be quite close to
the underlying contact potential curve, while the approximation is
more visually apparent in the case of the first derivative.

Observations over a large range of κ, α and ∆y suggest that V̂
is strictly convex. Eqs. (6) and (8) together with convexity imply
that V̂ (y) ≥ 0 ∀ y. From the above, it is clear that V̂ has the same
key features as V . Hence we can generally conclude that, for any
system, approximating V by V̂ does not change the form of the
energy balance, and energy-stable behaviour is preserved. Lastly,
it is not difficult to see that V̂ = V for α = 1, since in this case
the underlying contact potential curve is quadratic for y ≥ 0.

3. NUMERICAL PRELIMINARIES

Let ∆t = 1/fs denote the temporal step with sampling frequency
fs. Further, as per standard practice, let un be the numerical ap-
proximation of a variable u at time t = n∆t. Let us now define
elemental temporal difference and averaging operators:

δtu
n :=

un+ 1
2 − un− 1

2

∆t
, µtu

n :=
un+ 1

2 + un− 1
2

2
. (11)

Derivatives of u can now be approximated by the following cen-
tred discrete operators:

δt·u
n := δtµtu

n =
un+1 − un−1

2∆t
≈ ∂tu

∣∣∣
t=n∆t

, (12)

δ2t u
n := δt δtu

n =
un+1 − 2un + un−1

∆2
t

≈ ∂2
t u

∣∣∣
t=n∆t

. (13)

Similarly, the following centred discrete averaging operators can
be defined:

µt·u
n :=

un+1 + un−1

2
≈ u

∣∣∣
t=n∆t

, (14)

µ2
tu

n := µtµtu
n =

un+1 + 2un + un−1

4
≈ u

∣∣∣
t=n∆t

. (15)

1 Companion website: https://github.com/abhirambhanuprakash/qsa-
LumpedCollisions
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4. CASE STUDY I : MASS-BARRIER SINGLE
COLLISIONS

A good starting point to investigate numerical schemes for the sim-
ulation of lumped collisions is the simple problem of a mass m
colliding with a rigid barrier placed at ub. Let u = u(t) be the
displacement of the mass at time t, and let u0 and v0 be the initial
displacement and velocity of the mass, respectively. The equation
of motion of the mass-barrier system can be written as

m d2
tu = F (y) = −∂yV (y), (16)

where the compression variable y(t) := u(t)− ub, and F (y) and
V (y) are the contact force and potential as defined in (1) and (2),
respectively.

4.1. Discretisation

Eq. (16) can be discretised as

m δ2t u
n = Fn. (17)

Expanding (17) results in a nonlinear equation in s of the form

s+ z − qFn = 0, (18)

where s = yn+1 − yn−1 is the update step, z = 2(un−1 − un)

is a history variable, and q =
∆2

t
m

is a constant. Based on how the
contact force F is discretised, various numerical schemes are pro-
posed in the literature. Here, bearing in mind that energy conserva-
tion and stability are critical in musical instrument simulation, we
select two schemes having these key properties, described below.

4.1.1. Explicit scheme

Based on quadratising the contact potential as in (3), (4) can be
discretised as

Fn = −(µtψ
n)gn, δtψ

n = gn δt·y
n. (19)

The second equation in (19) results in a separate update of ψ as

ψn+ 1
2 = ψn− 1

2 +
1

2
gns, (20)

which when substituted in (18) yields the solution

s = −z + qψn− 1
2 gn

1 + 1
4
q(gn)2

. (21)

A variant of this scheme bounds ψn+ 1
2 ≥ 0 and partly in order

to respect this constraint, calculates gn in a branched form (see
section 3.3.6 in [8]). Here this variant (denoted EXP) is selected, as
it has desirable properties such as a provably non-adhesive contact
force [8].

4.1.2. Nonlinearly implicit scheme

Another choice of discretising F [6] is to use the discrete gradient:

Fn = −δt·V (yn)

δt·yn
= −V (s+ yn−1)− V (yn−1)

s
. (22)

Substituting (22) in (18) gives the nonlinear equation

s+ z + q
V (s+ yn−1)− V (yn−1)

s
= 0. (23)

Because V is described by a power law, eq. (23) is a transcen-
dental equation with the unknown s appearing implicitly within

yn−1 ≤ 0 ?

p = 0 ?

p ̸= 0 ?

bλ < 0 ?

s = −z

s = sλ,+

s = sλ,−

yes

no

yes

no

yes

yes

no
no

Figure 2: Branched solution with the QSA method.

the nonlinear term. As mentioned in the introduction, traditionally
the solution for s is obtained using iterative methods. Here, this
NLI scheme updated by employing a Newton-Raphson solver is
denoted IMP.

With either scheme, once s is found, one can update the com-
pression variable yn+1 = s+ yn−1 and then update the displace-
ment as un+1 = yn+1 + ub. The reader is referred to [8] for the
energy balance equations of the system for both schemes.

4.2. A Non-Iterative Update for a Nonlinearly Implicit Scheme:
The QSA Method

Starting from the same discretisation of F as the NLI scheme (eq.
(22)) but with V replaced by V̂ , we have the nonlinear equation

s+ z + q
V̂ (s+ yn−1)− V̂ (yn−1)

s︸ ︷︷ ︸
G(s)

= 0. (24)

Following the argument in section 2.2 in [16], here using the con-
vexity of V̂ we can show that dsG(s) ≥ 1, and therebyG(s) is not
only monotonically increasing, but also has a unique root. Further
exploiting the convexity of V̂ , the solution to (24) can be expressed
in branched-form, as illustrated by the flowchart in Figure 2, where

sλ,± =
−bλ ±

√
b2λ − 4aλcλ

2aλ
, (25)

and where {aλ, bλ, cλ} are the coefficients of the quadratic λ(s) :=
s G(s) (see companion website 1 for a derivation). Because the
conditions of a particular branch might result in one or both of
V̂ (s+ yn−1) or V̂ (yn−1) collapsing to zero, λ(s) takes different
forms in different branches. The coefficients {aλ, bλ, cλ} for each
branch are given in Table 1.

Table 1: Coefficients of the quadratic λ(s) for the branches in
Figure 2.

Branch aλ bλ cλ
yn−1 ≤ 0,
p = 0

1 z 0

yn−1 ≤ 0,
p ̸= 0

1+q ap
z +

q (2apy
n−1+bp)

q Vp(y
n−1)

yn−1 > 0,
p ̸= 0

1+q ap
z +

q (2apy
n−1+bp)

q {Vp(y
n−1)−V̂ (yn−1)}

yn−1 > 0,
p = 0

1 z −q V̂ (yn−1)
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G(s)

s0 s1 sl!1
sl sl+1 sN!1

(G(sl!1) 5 0) ^ (G(sl) > 0)
) sl!1 5 6s < sl

) (yl!1 ! yn!1) 5 (yn+1 ! yn!1) < (yl ! yn!1)

) yl!1 5 yn+1 < yl OR p = l

s

0

Root 6s := yn+1 ! yn!1

Figure 3: Logic to find the QSA segment index p.
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Figure 4: Collisions of a mass with a stiff barrier for two initial
displacements: with the QSA method with N = 5 (left), and with
EXP (right). In both subplots, one of the simulations (blue) is
time-shifted by τ such that the trajectories obtained by the two
simulations overlap until the collision instant. In all simulations,
κ = 108, α = 1.3,m = 10g, v0 = 2ms−1 and ∆t = 1/44100 s

4.2.1. Segment finding procedure

In the above, p represents the index of the quadratic spline segment
that corresponds to the interval in which yn+1 lies. In other words,

p :=

{⌈
yn+1

∆y

⌉
: yn+1 > 0,

0 : otherwise.
(26)

Because yn+1 = s + yn−1 is a shifted version of s, finding
the y-interval in which yn+1 lies is equivalent to finding the s-
interval in which the root s̆ of G(s) lies. Therefore, we take
yj , j = 0, 1, 2, ..., N − 1 as test values for yn+1, or equivalently,
sj = yj − yn−1 as test roots of G(s), and evaluate {G(sj)} ∀j.
The index p is then determined as the one at which the sequence
{G(sj)} changes sign from negative to positive. See Figure 3 for
a pictorial sketch of this logic. If G(s0) > 0, then it means that
s̆ < s0, which implies yn+1 < y0 = 0, and hence p = 0. By a
similar argument, for the other edge case where G(sN−1) < 0,
one can derive that p = N . This procedure involves at most
N quadratic function evaluations at each time step, and therefore
is not expected to be computationally intensive for a reasonably
small N .

4.3. Numerical Simulation

Figure 4 depicts the displacement of a mass colliding with a stiff
barrier as a function of time, simulated with the QSA method and
EXP. For different initial displacements, the time-shifted trajecto-

ries obtained with the QSA method overlap, similar to IMP (not
shown in figure). In contrast, in the case of EXP the trajectories
diverge after the collision instant, showing an instance of larger er-
ror of the scheme due to a non-unique phase-space trajectory (see
introduction).

5. CASE STUDY II : HAMMER-STRING INTERACTION

For a given number of segments, the QSA is expected to be less
accurate for a larger α. Hence, piano hammer-string interaction,
where α ≈ 2.5 [1] (see introduction), serves as a musically rel-
evant edge case to investigate at most how many segments (N )
are required for reasonably accurate simulations with the QSA
method. To this end, we choose a stiff string model with simpli-
fied damping, omitting complex phenomena such as longitudinal
modes, body coupling, etc., as in [8, 11]. The equations governing
the motion of the hammer-string system [8] are given by

ρA∂2
t u =T∂2

xu− EI∂4
xu+ 2ρA(η2∂

2
x − η0)∂tu+ F , (27)

mhd
2
twh =− F, (28)

where u = u(x, t) is the displacement of the stiff string at time
t and position x along its length L. ρ, A, T , E, I , η2 and η0
represent the string’s mass density, area of cross section, tension,
Young’s modulus, moment of inertia, frequency-dependent and
frequency-independent damping constants, while mh and wh =
wh(t) denote the mass and displacement of the hammer, respec-
tively. Given that the hammer comes into contact with the string
over a narrow region around a point, the contact force density
F = F(x, t) can be modelled as

F = δ(x− xh)F, (29)

where the dirac delta function δ(x − xh) represents the lumped
interaction of the hammer at a fixed position xh along the length
of the string, and F is the hammer-string contact force as defined
in eq. (1), with the hammer-string compression variable y(t) :=
u(xh, t) − wh(t). Further, we assume simply-supported string
boundary conditions

u(0, t) = 0, u(L, t) = 0, (30)

∂2
xu(0, t) = 0, ∂2

xu(L, t) = 0. (31)

5.1. Modal Expansion

To ensure accurate string resonance frequencies, following [8], the
solution to (27) is expanded as

u(x, t) =
M∑
i=1

vi(x)ũi(t), (32)

where vi(x) = sin(βix) and βi = iπ/L are the mode shape and
wave number of the ith mode, ũi(t) is the ith modal displacement,
and M is the number of modes (M → ∞ for an exact solution).
Eq. (32) can be written concisely in vector-matrix form as

u = vT ũ, (33)

where v = v(x) and ũ = ũ(t) are Mx1 vectors whose ith ele-
ments are vi(x) and ũi(t), respectively. As done in [8, 10], substi-
tuting (32) in (27), pre-multiplying by vT and spatially integrating
over [0, L] yields a set of modal ODEs

m̃ d2
t ũ+R dtũ+K ũ = F h, (34)
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where m̃ = ρAL/2 is the modal mass, and R and K are MxM
positive definite diagonal matrices, and

h = v(xh) (35)

is the Mx1 vector whose elements are the samples of the mode
shapes at xh. From (33) and (35), we can re-write y as

y = hT ũ− wh. (36)

5.2. Discretisation

Following [8], M is chosen such that the highest mode frequency
is lesser than the Nyquist frequency fs/2, and the modal string
ODEs (34) are discretised as

m̃ δ2t ũ
n + R̂ δt·ũ

n + K̂ µ2
t ũ

n = Fn h, (37)

where Fn is the discretised contact force as given by eq. (22) with

yn = hT ũn − wn
h (38)

being the discrete version of the compression variable (36). R̂

and K̂ are MxM diagonal matrices with diagonal entries repre-
senting the damping and stiffness constants that are adjusted to
compensate for numerical dispersion [8], respectively. Further, the
hammer dynamics (28) are discretised as

mh δ
2
tw

n
h = −Fn. (39)

From eqs. (37) and (39), the update equations are derived as

ũn+1 = ũn−1 − z̃+C h Fn, (40)

wn+1
h = wn−1

h − zh − ξhF
n, (41)

where z̃ = Bũn−1 − Aũn, zh = 2(wn−1
h − wn

h ), and ξh =

∆2
t/mh. A, B and C are MxM diagonal matrices with the ith

diagonal element depending on the natural frequency and decay
rate of the ith mode (see [8] for more detail). Pre-multiplying (40)
by hT and subtracting (41), we have the scalar update equation

yn+1 − yn−1︸ ︷︷ ︸
s

+
(
hT z̃− zh

)
︸ ︷︷ ︸

z

−
(
hTCh+ ξh

)
︸ ︷︷ ︸

q

Fn = 0, (42)

which is of the same form as (18), and therefore we can solve for s
non-iteratively by the branched-form solution of the QSA method
(see Figure 2). Once we obtain s, we can update Fn from (42) as
Fn = (s+ z)/q, and then substitute the value of Fn in the string
and hammer update equations (40) and (41) to update ũn+1 and
wn+1

h , respectively.
For the continuous and discrete energy balance equations of

the hammer-string system, the reader is referred to [8].

5.3. Numerical Simulation

Single hammer-string collisions were simulated with string and
hammer parameters set to the measurements reported in [1]. As
an inverse measure of the QSA method’s ‘accuracy’ (with respect
to the IMP result) we define a log normalised difference
log10 (||FQSA − FIMP||/||FIMP||), where FQSA and FIMP are
the hammer forces as functions of time obtained by the QSA method
and IMP, respectively. The hammer force evolutions in Figure 5
(left) suggest that generally the accuracy of the QSA method can
be increased by reducing ∆y , and the plot over a range of ∆y in
Figure 5 (right) confirms this trend.

Sounds of single hammer strikes were synthesised with low
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Figure 5: Left: Hammer force evolutions for a single hammer
strike for two ∆y values (corresponding to N = 3 (red) and N =
6 (green)) compared with IMP (dashed black); Right: Log of the
normalised difference between the hammer force signals obtained
with the QSA method and IMP as a function of log10(∆y/yref).
Red and green circles correspond to the ∆y values in the left plot.
The initial hammer velocity is 3.5ms−1, κ = 4.5x109, α = 2.5
and ∆t = 1/44100 s for all cases.

initial hammer velocity (1ms−1) and high string damping (η0 =
8s−1), with both the IMP and QSA methods, and with N varied
from 2 to 30 in the QSA case (see companion website 1). Listen-
ing to these sounds indicates that differences are barely noticeable
forN larger than 13. In less extreme cases than the hammer-string
interaction, a smaller N is expected to suffice for reasonably ac-
curate simulation. The optimal value of N needs to be determined
on a case-by-case basis.

6. CASE STUDY III : SLIDE-STRING INTERACTION

Slide-string instrumentalists slide a cylindrical object (generally
with their left hand) over a string to produce continuously-varying
pitch patterns such as glissando and vibrato. In addition to this,
they use the right-hand fingers to pluck/damp the string, and the
left-hand finger trails the slide object to damp the non-speaking
length of the string. The reason for choosing this case study is
twofold: (a) from Hertzian contact theory, α is around 1.5 in this
case [5], therefore the QSA method can be tested with α closer to
unity, and (b) real-time performance can be tested with complex
time-varying control inputs. To account for the time-varying slide
contact and finger forces, we modify the model in (27) as [11]

ρA∂2
t u = T∂2

xu− EI∂4
xu+ 2ρA

[
η2∂

2
x − η0

]
∂tu

+ Fo + Fl + Fr,
(43)

where the string parameters are as before, and Fo = Fo(x, t),
Fl = Fl(x, t) and Fr = Fr(x, t) are the slide contact, left-hand
finger and right-hand finger force densities, respectively. Because
the slide is cylindrical in shape, it comes into contact with the
string over a narrow region and therefore, similar to the hammer-
string case, Fo can be modelled in a lumped fashion as

Fo = δ(x− xo)F, (44)

where xo = xo(t) is the slide contact position, and F is the slide-
string contact force as defined in (1). As in [11], combining the
excitation and damping action of the finger forces, Fl and Fr are
phenomenologically modelled as

Fϕ = χϕ [Fϕ,e + Fϕ,R] , ϕ = l, r (45)
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where Fϕ,e = Fϕ,e(t) and Fϕ,R = Fϕ,R(t) are the excitation and
damping forces, and χϕ = χϕ(x, t) is the spatial distribution of
finger ϕ, respectively. The finger damping force is modelled as
being proportional to the magnitude of the finger excitation force,
i.e.,

Fϕ,R(t) = −r |Fϕ,e(t)| dtuϕ, (46)

where r is a finger damping parameter, and

uϕ = uϕ(t) =

∫ xϕ+Wϕ/2

xϕ−Wϕ/2

χϕ(x, t) u(x, t) dx (47)

represents the spatially averaged string displacement at xϕ. Moti-
vated by [10], here the spatial distributions are modelled as

χϕ(x, t) =

{
π

2Wϕ
cos

[
π

Wϕ
(x− xϕ)

]
: |x− xϕ| ≤

Wϕ

2
,

0 : otherwise,
(48)

where xϕ = xϕ(t) and Wϕ represent the centre and width of
χϕ(x, t), respectively. In order to incorporate hand compliance in
the model, the same string-slide-hand physical configuration as in
[11] is chosen, featuring a slide-hand oscillator (SHO) formed by a
slide mass mo, a hand stiffness kH and a hand damping parameter
rH, whose dynamics can be described by

mo d2
two + rH dt(wo − wH) + kH (wo − wH) = −F, (49)

where wo = wo(t) and wH = wH(t) are the displacements of
the slide and hand, respectively. Note that wH, xo, xϕ and Fϕ,e

are control inputs. Further, simply supported conditions (eqs. (30)
and (31)) are assumed for this case study as well, as in [11].

6.1. Modal Expansion

Following the same recipe as in section 5.1, we substitute (32)
in (43), pre-multiply by vT and spatially integrate over [0, L] to
obtain the modal ODEs

m̃ d2
t ũ+R dtũ+Kũ = F ho +

∑
ϕ=l,r

(Fϕ,e +Fϕ,R) hϕ, (50)

where m̃, R and K are as defined in section 5.1, and ho and hϕ

are time-varying Mx1 vectors, defined by

ho = v(xo(t)), and (51)

hϕ =

∫ xϕ+Wϕ/2

xϕ−Wϕ/2

v(x) χϕ(x, t) dx, (52)

with hϕ,i =
π2 cos(βiWϕ/2)

π2−β2
i W

2
ϕ

sin(βixϕ(t)) being the ith element of

hϕ, i = 1, 2, ...,M . Further, substituting (33) in (47), uϕ can be
re-written as

uϕ = hT
ϕ ũ. (53)

As in the hammer-string case, from (33) and (51), we can write the
slide-string compression variable y := u(xo, t)− wo as

y = hT
o ũ− wo. (54)

6.2. Energy Balance

Here, pre-multiplying (50) by (dtũ)
T and (49) by dtwo, the fol-

lowing energy balance equation for the modal slide-string formu-
lation is derived:

dtH = (Po +
∑
ϕ=l,r

Pϕ)− (Qstr +Qo +
∑
ϕ=l,r

Qϕ), (55)

where

H =
1

2
m̃||dtũ||2 +

1

2
ũTKũ+

1

2
mo(dtwo)

2

+
1

2
kH(wo − wH)

2 + V

(56)

is the Hamiltonian, now with the extra potential energy term due to
the hand stiffness kH. P and Q are driving and dissipated powers,
with subscripts o, str and ϕ representing the slide, the string and
finger ϕ respectively, and are given by

Po = [rH dtwo − kH(wo − wH)] dtwH

− F ∂xu|x=xodtxo,
(57)

Pϕ = (dtũ)
Thϕ

[
Fϕ,e − r|Fϕ,e|(dthϕ)

T ũ
]
, (58)

Qstr = (dtũ)
TR (dtũ), Qo = rH (dtwo)

2, and (59)

Qϕ = r |Fϕ,e| ||(dtũ)
Thϕ||2. (60)

Note that Po involves terms proportional to the vertical and hori-
zontal control input velocities dtwH and dtxo, and Pϕ contains a
term due to the changing excitation position (dthϕ). Such terms
are expected when there is time-variance [11, 17].

6.3. Discretisation

The modal ODEs in (50) are discretised as

m̃δ2t ũ
n + R̂ δt·ũ

n + K̂ µ2
t ũ

n = Fnµt·h
n
o

+
∑
ϕ=l,r

(Fn
ϕ,e + Fn

ϕ,R) µt·h
n
ϕ,

(61)

where R̂ and K̂ are the damping and stiffness diagonal matrices
which compensate for numerical dispersion as before. The finger
damping force (eq. (46)) is discretised as

Fn
ϕ,R = −r |Fn

ϕ,e| δt·un
ϕ, (62)

where from (53) we have

un
ϕ = (hn

ϕ)
T ũn. (63)

The SHO dynamics (eq. (49)) can be discretised as

moδ
2
tw

n
o + rH δt·(w

n
o −wn

H)+ kHµ
2
t (w

n
o −wn

H) = −Fn. (64)

From (61) and (64), the following string and slide update equations
can be derived:

ũn+1 = ũn−1 − (z̃− ẽ)

+C

Fnµt·h
n
o +

∑
ϕ=l,r

(Fn
ϕ,e + Fn

ϕ,R) µt·h
n
ϕ

 ,
(65)

wn+1
o = wn−1

o − zsho − qsho F
n, (66)

where

z̃ = B ũn−1 −A ũn, (67)

ẽ = C
∑
ϕ=l,r

Fn
ϕ,e µt·h

n
ϕ, (68)

zsho =
2 (KH + 1)wn−1

o + (KH − 1)wn
o − ξoT n

H

1 +KH +RH
, and (69)

qsho =
ξo

1 +KH +RH
, (70)
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with A, B and C as defined in section 5.2. KH =
kH∆2

t
4mo

, RH =

rH∆t
2mo

, and ξo =
∆2

t
mo

are constants, and

T n
H = kH µ

2
tw

n
H + rH δt·w

n
H (71)

is a ‘hand term’ fully determined by the control input wn
H and the

hand compliance parameters kH and rH.

6.4. Solving for the Contact and Hand Damping Forces

To solve for the forces Fn and Fn
ϕ,R, a similar approach as in [10]

is taken. Pre-multiplying (65) by (hn
o )

T and (hn
ϕ)

T , ϕ = l, r, a set
of three scalar equations is obtained as

sζ = eζ − zζ + θζoF
n +

∑
ϕ=l,r

θζϕF
n
ϕ,R, ζ = o, l, r (72)

where sζ =
(
hn
ζ

)T (
ũn+1 − ũn−1

)
, eζ =

(
hn
ζ

)T
ẽ,

zζ =
(
hn
ζ

)T
z̃, θζo =

(
hn
ζ

)T
C µt·h

n
o and θζϕ =

(
hn
ζ

)T
C µt·h

n
ϕ.

Now we use (62) to eliminate sl and sr. This allows expressing
each of Fn

l,R and Fn
r,R as linear functions of Fn alone, which when

substituted in the equation for so give us a single scalar string up-
date equation

(hn
o )

T ũn+1 = (hn
o )

T ũn−1 − zstr + qstrF
n, (73)

where zstr is a combined ‘history and excitation variable’ and qstr
is a linear combination of θoo, θol and θor. Finally, subtracting
(66) from (73) yields

yn+1 − yn−1︸ ︷︷ ︸
s

+(zstr − zsho)︸ ︷︷ ︸
z

− (qstr + qsho)︸ ︷︷ ︸
q

Fn = 0, (74)

which is of the form in (18) and thus can be non-iteratively solved
with the QSA method (see section 4.2). Once s is found, Fn =
(s + z)/q can be computed, and this can then be used to update
Fn
ϕ,R, ϕ = l, r from the linear relations obtained previously. The

contact forces Fn and Fn
ϕ,R are then substituted in (65) to update

the modal displacements ũn+1.

6.5. Numerical Energy Balance

Pre-multiplying (61) by (δt·ũ
n)T and (64) by δt·wn

o , a numerical
energy balance that is analogous to the continuous domain balance
(eq. (55)) can be derived as

δtH
n = (Pn

o +
∑
ϕ=l,r

Pn
ϕ )− (Qn

str +Qn
o +

∑
ϕ=l,r

Qn
ϕ), (75)

where the numerical Hamiltonian

Hn+ 1
2 =

1

2

{
m̃||δtũn+ 1

2 ||2 + (µtũ
n+ 1

2 )T K̂(µtũ
n+ 1

2 )

+mo(δtw
n+ 1

2
o )2 + kH(µ

2
t (w

n+ 1
2

o − w
n+ 1

2
H ))2

}
+ µtV (yn+ 1

2 ).

(76)

The numerical driving and dissipation powers are

Pn
o =

{
rHδt·w

n
o − kHµ

2
t (w

n
o − wn

H)
}
δt·w

n
H

− Fn

{
δt·(µt·u(x

n
o , n∆t))

δt·xno

}
δt·x

n
o ,

(77)

Pn
ϕ = δt·ũ

nµt·h
n
ϕ

{
Fn
ϕ,e − r|Fn

ϕ,e|(δt·hn
ϕ)

Tµt·ũ
n
}
, (78)

Qn
str = (δt·ũ

n)T R̂(δt·ũ
n), Qn

o = rH(δt·w
n
o )

2, and (79)

Qn
ϕ = r|Fn

ϕ,e|
{
(δt·ũ

n)Tµt·h
n
ϕ

}2

. (80)

6.6. Numerical Simulation

Slide gestures were simulated with the same control inputs and
parameters as in Figure 3 in [11] and a three-slide musical phrase
comprising slide attachment/detachment, glissando and vibrato was
synthesised with both IMP and the QSA method (with N = 5).
With both methods, the slide-string rattle could be heard, par-
ticularly just after the pluck releases in the sound examples [see
companion website], and the time-variation of the harmonics is
similar to the finite-difference (FD) model in [11] (which uses the
branched-form solution restricted to unity α), with the excitation
sustained via the energy injected by the time-variance of the con-
trol inputs.

For α = 1 there is no audible difference between the sounds
from the QSA method and IMP - this is expected because the QSA
is exact in this case. With α = 1.5, the collisions are slightly softer
as expected with both methods. However, a subtle high frequency
‘glitter’-like artefact can be heard in the background with the QSA
method. This effect can be subdued by reducing N , which indi-
cates that this is likely caused by jumps in the derivatives of the
contact force introduced by segment switching.

A notable feature of the simulation with the model proposed
here is the disappearance of the noise-like components that were
mistaken for ‘slide noise’ in [11]. However, this has little to do
with QSA, and can be attributed to the spatially exact mode shape
sampling at the contact points in the modal formulation, which
avoids the non-smooth (de)-interpolation used in [11]. For sound
examples, the reader is referred to the companion website 1.

6.7. Computational Efficiency

Following [8, 17], real-time factor (RTF) is defined as the amount
of time that passes with the computation of one second of audio
output. With the assumption that the control parameters vary rela-
tively slowly over time, in a Matlab simulation these were updated
blockwise for everyNb samples, employing linear interpolation as
in [17]. Average RTFs of a few updates that are part of the simu-
lation loop are listed in Table 2. Note that the average RTF of the
QSA solver is about 0.045, which shows that the proposed method
does not contribute much to the runtime. The RTF of updates of the
time-varying parameters (such as the mode shape vectors) reduces
asNb is increased, as some of the computationally expensive oper-
ations are performed only once per block. Including the time taken
to memorise values, the RTF of the whole simulation is about 0.2
for Nb = 64.

7. CONCLUDING REMARKS

By means of approximating the contact potential curve with a quadratic
spline, a non-iterative technique for the update of an NLI scheme
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Table 2: Average RTFs of QSA solver and updates within the sim-
ulation loop for various values of Nb

Nb 8 16 32 64
QSA solver 0.050 0.047 0.041 0.040

Parameter updates 0.104 0.088 0.074 0.071
Linear string update 0.025 0.024 0.022 0.022

is proposed for the specific case of lumped collisions. The approx-
imation retains key properties of the underlying Hertzian power
law such as convexity and non-negativity, and thereby preserves
salient features including: (a) the energy-stable behaviour of the
continuous-domain system, and (b) the uniqueness of solution of
the NLI scheme. Initial value problem simulations indicate that
the uniqueness of the phase-space trajectories of the NLI scheme
is also kept intact. Results on string-object interactions show that
accuracy can be controlled by varying the number of spline seg-
mentsN , and also suggest that a smallN may be sufficient for mu-
sical instrument simulations. Further, a modal slide-string model
is introduced, and continuous and numerical energy balances are
derived. Simulations employing the proposed method demonstrate
real-time feasibility under time-varying control inputs. Thus, with-
out compromising on efficiency, the proposed method extends the
branched-form solution to the case of non-unity α, side-stepping
the issues associated with existing collision modelling techniques.

Nevertheless, as the adage goes - "there is no such thing as
a free lunch", and the above benefits come with a few drawbacks.
Firstly, the proposed method is not readily extendable to distributed
collisions. This is because application of the method in a dis-
tributed scenario generally results in a system of coupled quadratic
equations, and solving such a system is non-trivial. An exception
to this is the specific case of a barrier with aligned grid [9], which
is of little practical significance as this is often not the case in musi-
cal applications, for example, in guitar string/fretboard collisions,
fret positions may not be aligned with the (regularly spaced) string
grid. Further, due to the non-smooth nature of the contact force
approximation, the latent higher-order derivative structure is bro-
ken and this likely causes the production of (mildly audible) high-
frequency artefacts in sustained contact simulations. Although this
issue is seemingly alleviated by deploying cubic and higher-order
splines instead of quadratic splines, doing so would raise non-
trivial questions around ensuring convexity of the approximation.
Moreover, the authors’ attempts at computing robust numerical so-
lutions of higher-order polynomial equations indicate that it (a) is
more computationally expensive than solving quadratic equations,
and (b) is non-trivial, as finite precision could lead to large errors.
The inquisitive reader is encouraged to refer to [18] in order to
appreciate the intricacies of cubic equation solving.
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