
Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 DAFx.1

 QUBX: RUST LIBRARY FOR QUEUE-BASED MULTITHREADED REAL-TIME
PARALLEL AUDIO STREAMS PROCESSING AND MANAGEMENT

TEMPLATES FOR DAFX-20, AUSTRIA, VIENNA

Pasquale Mainolfi
Conservatorio Statale di Musica “G. Martucci”

Salerno, IT
pasquale.mainolfi@consalerno.it

 ABSTRACT

The concurrent management of real-time audio streams pose
an increasingly complex technical challenge within the realm of
the digital audio signals processing, necessitating efficient and
intuitive solutions. Qubx endeavors to lead in tackling this obsta-
cle with an architecture grounded in dynamic circular queues,
tailored to optimize and synchronize the processing of parallel
audio streams. It is a library written in Rust, a modern and pow-
erful ecosystem with a still limited range of tools for digital sig-
nal processing and management. Additionally, Rust’s inherent
security features and expressive type system bolster the resilience
and stability of the proposed tool.

1. INTRODUCTION

Effective management of parallel audio streams is a critical
aspect within the domain of real-time digital signal processing
(DSP). Managing concurrent audio streams involves processing
them simultaneously and independently from one another. This
necessitates careful consideration of various aspects of the prob-
lem, including latency, computational load, temporal coherence,
and resource management, all of which directly impact the quali-
ty, performance, and robustness of the entire system.

The management and control of these aspects can significant-
ly vary depending on the programming language utilized. Im-
plementing a particular approach in a specific language entail
providing a tangible illustration of how that theoretical approach
translates into action, with all the limitations and advantages in-
herited from the implementation context.

Although specialized environments exist, such as C-family
languages like JUCE1, Cmajor2 or Faust3, special attention has
been given to Rust4 in the choice of programming language. Rust
is emerging as an increasingly popular choice in the field of DSP,
thanks to its combination of high performance and system securi-
ty.

In the field of Digital Signal Processing (DSP), the pro-
gramming languages C and C++ have long been considered the
reference point, owing to their ability to operate at hardware-
proximate abstraction levels. However, the memory-unsafe man-
agement in these languages is well known and such vulnerability

Copyright: Ó 2024 Pasquale Mainolfi. This is an open-access article distributed
under the terms of the Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, adaptation, and reproduction in any
medium, provided the original author and source are credited.

1 https://juce.com/
2 https://cmajor.dev/
3 https://faust.grame.fr/
4 https://www.rust-lang.org/

can be introduced into applications without developers' aware-
ness [18].

In this context, Rust emerges as a memory-safe language, en-
suring secure memory handling while maintaining high execution
performance [19, 20]. Its distinctive ownership and borrowing
system prevent common bugs such as null pointer dereferencing
or invalid memory release. This characteristic significantly re-
duces the possibility of unexpected behaviors and enhances the
stability and reliability of applications.

Examples of this are studies conducted by Rooney and Mat-
thews [21], comparing the efficiency of FFT algorithm imple-
mentations in Rust and C on two different Raspberry Pi devices,
demonstrating the superiority of Rust implementation. Fougeray
[22] examined the efficiency of DSP algorithm implementations
in Rust compared to CMSIS-DSP, noting a performance increase
of approximately 1.8x. Additionally, Namavari [23] leveraged
Rust as a foundation to create a Domain Specific Language
(DSL) for controlling and managing specific musical structures,
capitalizing on Rust's type system.

Furthermore, Cargo5, the package manager for Rust, is intui-
tive to use and designed to simplify the development and distri-
bution process. Thanks to its integration with Rust's build sys-
tem, Cargo automatically manages dependencies and package
versions, ensuring consistency and compatibility among various
libraries.

Therefore, the primary goal is to actively contribute to the

development of tools for managing and controlling digital audio
signals in a new language that offers a programming paradigm
and unique features for developing highly performant and scala-
ble solutions. Nevertheless, creating an environment for real-time
parallel data stream DSP requires a deep understanding of signal
processing concepts and the peculiarities of the involved hard-
ware. This complexity is further accentuated by the need to man-
age data in real-time, ensuring synchronization and coherence of
operations, and requires precise management of latency and exe-
cution priorities. Additionally, challenges related to low-level
programming and performance optimization may arise, as such
contexts often demand the implementation of efficient algorithms
operating on large amounts of real-time data. This can make the
development and debugging process extremely challenging. Con-
sequently, there is a need to devise a tool whose primary objec-
tive is to drastically simplify the implementation of complex con-
texts, providing an intuitive interface that minimizes the time re-
quired to configure and use the system. This would allow users to
focus directly on their goals without encountering obstacles or
wasting time associated with implementation.

In this context, the Qubx library emerges as an intuitive and
flexible tool, with an architecture based on shared queue lists

5 https://doc.rust-lang.org/cargo/

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

444

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 DAFx.2

aimed at creating and managing advanced and high-performance
audio processing systems.

2. APPROACH ARCHITECTURE

Qubx enables efficient management of concurrent audio
streams through an architecture that leverages queue lists. This
design facilitates secure and sequential access to audio data. A
key feature of Qubx is its use of meticulously crafted structural
logic to mitigate the complexities inherent in multi-threading,
such as synchronization challenges and recurrence conflicts.
Consequently, Qubx promotes a more deterministic execution
flow, thereby enhancing the predictability and reliability of the
data management process.

2.1. The Queue as a Key Component

In the domain of audio processing, the queue emerges as a
pivotal tool for efficiently handling and manipulating incoming
data. The sequential storage of elements provides quick and or-
derly access to the data in the order of their insertion. This attrib-
ute proves especially advantageous for processing tasks that re-
quire sequential frame-by-frame processing, facilitating a stream-
lined and optimized workflow.

2.1.1. Queues (Abstract Data Type)

In computer science, a queue [9] stands as an abstract data
type (ADT) that delineates an ordered collection of elements.
Operations involving access and removal adhere to the FIFO
(First-In-First-Out) principle [1], signifying that the element in-
serted earliest is the first to be removed [1, 2].

Figure 1: Main operations on the queue (enqueuing and dequeu-
ing)

Queues can be categorized as linear or circular, bounded or
unbounded. The key distinction between a linear and circular
queue lies in managing vacant spaces within the data structure.

A linear queue adheres to a linear structure while maintaining
the FIFO principle. In a bounded linear queue, a limit is imposed
on the maximum number of elements it can contain. Upon reach-
ing full capacity, attempting to insert a new element triggers an
overflow condition [4, 5].

Conversely, a circular queue employs a circular buffer for el-
ement storage. In a bounded circular queue, reaching maximum
capacity involves relocating the insertion pointer to the buffer's
inception, potentially overwriting previous elements if the queue
is full. In the unbounded variant, memory allocation dynamically
adjusts as needed. Nevertheless, overflow conditions can arise in
both scenarios. Similarly, both bounded and unbounded cases
may encounter underflow when attempting to remove an element
from an empty queue [6].

Key operations supported by a queue include inserting ele-
ments (enqueue), removing elements from the queue's outset
(dequeue), peeking at the initial element without removing it

(peek), assessing whether the queue is empty (empty), and de-
termining the queue's size (size) [3, 6].

The ADT concept an abstract depiction of data organization
and permissible operations, abstaining from specifying internal
implementations. In practical application, queue implementation
utilizes concrete data types such as arrays or linked lists. Alt-
hough the complexity term may vary slightly depending on the
specific implementation and the number of the elements present,
in general, the main operations tend to have a costant O(1) 6 or
linear time complexity relative to the number of elements, while
the space complexity is usually linear O(n) in the worst case,
where n represents the number of elements in the queue.

2.1.2. Qubx Queue Model

The queue model employed in Qubx for managing audio
frames adopts the unbounded linear type, realized through arrays,
structured as depicted in the following pseudocode.

CLASS Queue
 VARIABLE q = ARRAY[]
 VARIABLE front = 0
 VARIABLE rear = -1

 FUNCTION empty
 RETURN TRUE IF front > rear

 FUNCTION enqueue(data)
 INCREMENT rear by 1
 q[rear] = data

 FUNCTION dequeue
 IF NOT empty
 ELEMENT = q[front]
 INCREMENT front by 1
 RETURN ELEMENT
 ELSE
 RETURN NONE

 FUNCTION peek
 IF NOT empty RETURN q[front]

Utilizing an unbounded queue proves particularly advanta-
geous in this context as it can dynamically adapt to fluctuations
in data volume, maintaining constant space allocation without
risking data loss. Opting for an array rather than a linked list [9]
yields minimal differences apart from simplifying code develop-
ment and maintenance, thereby mitigating the risk of errors.
However, it is imperative to note that unlike arrays, linked list
necessitate additional memory for pointers (memory overhead),
resulting in heightened memory resource consumption compared
to arrays. Moreover, arrays offer superior cache performance
since elements occupy contiguous memory locations. Converse-
ly, elements within a linked list may be dispersed non-
contiguously in memory, heightening the probability of cache
misses and compromising data access performance [7, 8].

2.2. Benefits of Three-Way Multithreading Architecture

In a computer science, a thread denotes an autonomous exe-
cution path within a process. A process embodies an instance of a

6 The Big-O notation in computer science is a way to describe the
asymptotic behavior of a function, especially in terms of the time
complexity or space used by an algorithm. It is useful for under-
standing how efficient an algorithm is.

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

445

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 DAFx.3

running program and has the capability to accommodate multiple
threads (multithreading), each executing instructions concurrent-
ly while sharing the same execution context, including memory
and system resources [9].

Typically, processes execute sequentially, one after another,
thereby potentially blocking hardware for operations of a certain
duration. Consequently, if another process requires execution, it
must await the readiness of the hardware. In the context of multi-
threading (Figure 2), multiple threads operate relatively simulta-
neously [11,12].

Figure 2: Sequentially and multithreading process

In many instances [13, 14, 15], the parallel management of
audio streams entails the utilization of multiple threads, each en-
trusted with processing its designated data stream autonomously.
During execution, each thread retrieves data from its stream,
conducts necessary processing, and subsequently transmits the
processed data to the output. This iterative process continues as
long as data persists within the input streams. However, employ-
ing a designated number of threads inevitably engenders chal-
lenges in resource management and precise synchronization, typ-
ically addressed through the implementation of mutexes. A
mutex serves as a synchronization mechanism, akin to a sema-
phore, enabling a thread to temporarily restrict access to a shared
resource until it completes its processing.

Starting from version 0.42.0, for instance, the pd~ object
[24] enables the integration of PureData7 patches executed on
separate threads within a dedicated main process (master patch)
for I/O management. DSP computations in individual child pro-
cesses occur independently from those executed in the parent
process, while communication between the various processes and
the main one occurs through shared FIFO queues.

Faust [25] utilizes OpenMP8 or WSS (Work Stealing Sched-
uler, from version 0.9.10 onwards) to automate parallelization. In
the former case (OpenMP), it employs a fork-join model where
each main thread distributes the workload to a pool of child pro-
cesses. In the letter case the approach is dynamic. A series of
threads (created and destroyed dynamically during program exe-
cution) actively seeks tasks to execute. Specifically, each thread
has its own task queue to execute. When the queue is empty and
there are no tasks to execute locally, the thread can “steal” tasks
from another thread’s queue.

Other parallelization techniques used in Open Sound World
(OSW) are illustrated in [14].

While this mechanism safeguards data integrity and forestalls
conflicts among threads vying for access to the same shared re-

7 https://puredata.info/
8 https://www.openmp.org/

source, it also introduces complexities into real-time program-
ming for DSP, rendering it arduous and less accessible.

Nevertheless, alternative implementations featuring non-
blocking structures [18] and other proposed solutions for this is-
sue exist [16, 17].

Recently, the Crill library (Cross Platform I/O and Low La-
tency) [28] for C++, developed by Doumler [17], proposes a lock
and wait-free approach by adapting the Read-Copy-Update
(RCU) mechanism [26, 27] to the context of real-time audio.

However, these approaches may be less straightforward and
intricate to implement. Therefore, despite the availability of solu-
tions, substantial investments of time and effort are requisite for
their effective and intuitive utilization.

The architecture of Qubx is fashioned as a system compart-

mentalized into three principal streams: one exclusively dedicat-
ed to outgoing audio data, another for signal processing and indi-
vidual signal encoding, and finally, a third for monitoring active
processes. This tripartite approach, distinct from conventional
multithreading, yields significant technical advantages. Opera-
tional components organized in this manner maintain continual
interaction, affording precise control over each phase of the pro-
cess and heightened flexibility in adapting to specific requisites.
Additionally, this approach adeptly manages real-time processes,
judiciously leveraging available resources, minimizing complexi-
ty, and mitigating issues and risks associated with race conditions
and deadlocks. It notably diminishes potential read-write con-
flicts and simplifies issue localization and resolution, as each
stream can be independently monitored and analyzed, thereby
streamlining the debugging and maintenance processes for the
system as a whole.

Each process dedicated to real-time data processing (QubxD-
spProcess in Qubx, see sec. 3) has also been designed to maxim-
ize efficiency under conditions of excessive computational load
through data parallelization. This strategy allows each process to
divide the data into manageable portions and perform operations
on them simultaneously, thereby ensuring optimal computational
load balancing (6)(7). However, it should be noted that the im-
plementation of data parallelism has been designed to be turned
off. This is because, when the computational load is light, the
additional overhead introduced by this strategy does not improve
performance but rather makes the overall process slower (see Ta-
ble 2).

Figure 3: Operative diagram of Qubx model

Thread N

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

446

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 DAFx.4

2.3. Managing Parallel Audio Data in Qubx

The operational principle of the entire Qubx system (Figure
3) follows a relatively straightforward approach. It employs a
dynamic array (unbounded) to manage a variable number of
queues, with the quantity of queues being directly proportional to
the number of active parallel audio streams.

Each audio stream is partitioned into frames of predefined
length, processed sequentially, and inserted into the respective
queue.

The array of queues serves as a shared resource between the
main thread and the thread dedicated to outgoing audio stream-
ing. The latter continually traverses the array of queues, extract-
ing frames with identical temporal positions from each queue and
subjecting them to a summation process. This process yields a
single aggregated frame, which undergoes processing and is
promptly directed to the output.

Consider a scenario where we have N audio streams, repre-

sented as A, each of which is segmented into M frames, denoted
as f. Every frame undergoes sequential processing individually
(1).

 (1)

Where An represents the n-th audio stream, and let the array

of queues be denoted by Q, where Qi denoting the i-th queue q.

 (2)

Each queue q contains a series of frames, denoted as Fij,
where j indicates the index of the processed frame within the re-
spective queue.

The resulting frame Rj (3) is processed and put out.

(3)

Where N is the total number of queues present in Q.
As depicted in the operational diagram in Figure 3, N inde-

pendent streams imply Tn independent processes (4).

 (4)

Here, Tn represents the n-th thread associated with the n-th

stream An.
The state Sn of each T(An) is stored in a shared dictionary D

between the main thread and the thread dedicated to monitoring
the state of each T(An) (Thread 2 in Figure 3) (5).

 (5)

Where id is the unique identifier of the n-th process T(An).
When T(An) completes its task, the state Sn in D(Tid(An), Sn)

will be updated from busy to free, and subsequently terminated
and removed from D.

The monitoring process assumes a pivotal role in system
management by upholding responsiveness, ensuring seamless
continuation of main execution even in the event of secondary
thread suspension. Thread suspension, representing a blocking
operation, may necessitate waiting for its completion before pro-
ceeding with other tasks. Moreover, terminating processes upon
task completion optimizes memory and CPU resource utilization.
Essentially, process termination involves releasing previously
allocated memory and CPU resources, fostering theoretically and
practically more efficient system utilization.

Under conditions of excessive computational load, data pro-

cessing (DSP in (1)) is performed by exploiting data paralleliza-
tion. This procedure involves dividing a dataset into n subsets,
with each subset being processed by one of the n computing
units.

Starting from (1), if we consider that the DSP operation pro-
cesses the entire set of frames An sequentially, then we could rep-
resent a parallelization context as in (6), where each fi is pro-
cessed by a separate computing unit, independently and simulta-
neously.

(6)

The total execution time Tmax (7) will depend on the maxi-
mum execution time among all n computing units.

(7)

3. IMPLEMENTATION AND USAGE OVERVIEW

3.1. Implementation Overview

The implementation of this approach in Rust differs signifi-
cantly from approaches in other languages, particularly concern-
ing memory management. Rust is specifically designed to priori-
tize safety and performance, employing a system centered around
data ownership and advanced types. This design allows for the
assurance, at compile time, of the absence of common memory
management errors such as dangling pointers, buffer overflows,
and race conditions. While this emphasis on memory control re-
sults in a more robust implementation, it may potentially lead to
code that is less readable and fluid.

The source code for this implementation is available at the

following url: https://github.com/PasqualeMainolfi/Qubx.git.

In Rust, handling operational flows involving concurrent

blocks can be efficiently and safely managed using the standard
module std::thread9. To guarantee exclusive access to
shared data among threads, Rust provides specific types and
methods, including Arc, Mutex, lock(), and drop(), which
are utilized in the developed of the proposed approach.

Arc (Atomic Reference Counting) is a data type defined in
std::sync::Arc that provides atomic reference counting,
enabling concurrent data sharing while preserving integrity and
adhering to ownership priciples.

9 https://doc.rust-lang.org/std/thread/

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

447

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 DAFx.5

Mutex (Mutual Exclusion), defined in
std::sync::Mutex, ensure exclusive access to shared data
among processes. When a thread acquires a mutex lock (see 2.2),
no other thread can access the data until the lock is released.

Figure 4: This code snippets defines the QList structure, which is
designed to efficiently manage a list of concurrent queues. It
highlights the structure definition and its main methods.

This lock is obtained using the lock() method on a mutex
data which returns a std::sync::MutexGuard representing
a locked reference to the data protected by the mutex. The

drop() method enables manual release of the lock, ensuring
proper and efficient management of shared resources when they
are no longer needed.

Data parallelization is implemented using rayon10
(par_iter_mut() method in Qubx), a specific library that
enables parallel operations on data collections by automatically
leveraging the processor's multiple cores.

The structure for managing parallel audio streams (Figure 4)

and the set of shared queues (referred to as QList in Qubx) are
designed to optimize resource utilization, minimizing waste and
maximizing efficiency in processing data across multiple infor-
mation streams concurrently.

When QList is tasked with storing a new audio data stream, it
verifies the availability of empty queues to accommodate it be-
fore creating a new one, thereby dynamically and responsively
allocating resources based on contextual demands. QList utilizes
the ConcurrentQueue module from the concurrent_queue11
library to create and manage concurrent FIFOs.

Continuous monitoring of thread states is undertaken by an

additional process solely dedicated to terminating threads that are
no longer operational.

Figure 5: Code snippets showcases the implementation of a
start_monitoring_active_processes() function
within the Qubx library. Its role is to initiate a thread for moni-
toring and managing active processes.

The concept of a thread's state refers to its operational condi-
tion within a process, with an operating state indicating active
execution of instructions and a non-operating state indicating
completion of computation or idleness.

The monitoring and termination process contributes to addi-
tional resource optimization, particularly crucial in resource-

10 https://docs.rs/rayon/latest/rayon/
11 https://docs.rs/concurrent-queue/latest/concurrent_queue/

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

448

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 DAFx.6

intensive contexts like real-time audio signal processing. Termi-
nating an inactive thread releases all associated resources, includ-
ing memory, and reduces the system's workload, eliminating the
need to monitor or schedule the inactive process for execution.

Importantly, the safe termination of a thread is a blocking ac-
tion, requiring the parent process to await the completion of the
child thread's execution before proceeding further. Implementing
an independent process for monitoring and eventual termination
allows the main process to continue without the risk of being
blocked.

3.2. Usage Overview

Version 0.1.0 of the Qubx system introduces the following
functionalities:

§ Creation and management of an indefinitely large

number of independent processes for controlling out-
going master audio streams (in Qubx, a data of type
QubxMasterProcess), in parallel, each potentially asso-
ciated with a different device.

§ Creation and management of a potentially indefinitely
large number of independent duplex stream processes
(in→dsp→out, of type QubxDuplexProcess), which
can be associated with different devices, for the real-
time management and manipulation of signals captured
in real time.

§ Possibility to create an indefinitely large number of
processes (of type QubxDspProcess) for real-time
management and manipulation of sampled audio sig-
nals, in parallel.

For the first point, creating a process for controlling an out-

going master audio stream involves allocating an independent
queue-based space shared with one or more QubxDspProcess,
communicating with a specific output device. Each QubxMaster-
Process can be assigned a function for manipulating outgoing
data (Figure 6).

Figure 6: Example of defining and starting a QubxMasterPro-
cess.

The type QubxDuplexProcess is dedicated to capturing sound
material in real time through a specific input device, processing
these signals in real time, and reproducing them through a specif-
ic output device (Figure 7).

Figure 7: Example of defining and starting a QubxDuplexPro-
cess.

Lastly, a QubxDspProcess is dedicated to encoding, pro-
cessing, and inserting an audio stream into the respective shared
queue for playback. Upon creation, each QubxDspProcess must
be associated with a specific QubxMasterProcess. During startup,
a specific function can be assigned for processing audio data, and
potentially, a single process could generate an indefinite number
of parallel streams.

Figure 8: Example of defining and starting a QubxDspProcess

As depicted in Figure 8, the creation of a QubxDspProcess
requires the unique identifier of a QubxMasterStreamoutProcess
(e.g., "M1" in the example in Figure 8) and specifying whether
the process will use the data parallelization or not (boolean type,
e.g. true in Figure 8).

Figure 9: A more detailed representation of the operational dia-
gram show in Figure 3. Section “A” is dedicated to the
QubxDuplexProcess, and in section “B” the QubxMaster-
Streamout and DspProcess pair is illustrated.

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

449

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 DAFx.7

The comprehensive documentation can be accessed by com-
piling the library and generating the documentation using Cargo
(see https://github.com/PasqualeMainolfi/Qubx.git).

Additionally, an example of Qubx usage implemented for an
advanced granular synthesis process is available at:
https://github.com/PasqualeMainolfi/QubxGCT.git. This exam-
ple serves to demonstrate its usage and functionality of Qubx.

4. CONCLUSIONS

Qubx emerges as a Rust library, bridging a crucial gap in the
ecosystem by furnishing tools dedicated to real-time audio man-
agement and processing. Despite the capabilities of Rust, the
availability of specific and user-friendly solutions for real-time
audio management and manipulation remains limited (see:
https://rust.audio/).

The examples provided, including a granulator constructed
using the proposed architecture, underscore the efficiency and
adaptability of the method across various working scenarios.
These tests encompass the utilization and processing of sampled
audio files, synthetically generated events, and events captured in
real-time.

The capability to manage frame-by-frame processing signifi-
cantly alleviates computational load, resulting in an estimated
average latency of about 6 – 15 ms, encompassing both pro-
cessing and generation aspects (as observed in the provided ex-
amples. By setting verbose to true during the instantiation of
Qubx structure - such as in the following example: let qubx
= Qubx::new(true); - detailed output, including latency
amount for each individual process, is attainable). The term la-
tency denotes the duration required for a particular sequence of
operations to transpire. Latency, as assessed within a Master-
Streamout, encompasses the time necessary to retrieve frames
from queues, consolidate, process, and subsequently write them
to the output. In a DuplexProcess, it signifies the duration essen-
tial for processing a frame and delivering it to the output. Finally,
within a DspProcess, it represents the time essential for segmen-
tation, frame-by-frame processing, and the enqueuing of frames
into their respective queues. Furthermore, it is imperative to con-
sider the physiological latency linked with the specific input and
output devices (refer to Table 1).

Table 1: Average latency values in Qubx in a non-parallel
manner

In Table 1, the average latency values corresponding to a par-
ticular operational context are presented (gathered using a Mac-
Book Pro M3 Max with 32 GB of RAM). Specifically, these con-
texts include real-time captured audio (input from a microphone),
sampled audio events, and synthetically generated audio signals
(synthetic), with data parallelization disabled.

However, in scenarios where real-time captured data under-
goes processing, the limitation of buffer size becomes apparent.
For instance, when granulating data transmitted from any input
device on a frame-by-frame basis and employing a phase track-

ing mechanism to handle grain lengths surpassing that of the
buffer - such as through the application of a segmented envelope
- input buffers smaller than 1024 samples may encounter opera-
tional challenges.

In Table 2, the results obtained by comparing execution with

data parallelization activated versus sequential execution are rep-
resented.

Table 2: Average latency values in Qubx in parallel (PAR.)
and sequential mode (SEQ.)

The results clearly show that activating data parallelization

(PAR. in Table 2) under conditions of relatively light computa-
tional load significantly worsens performance compared to se-
quential processing (SEQ. in Table 2). Conversely, under condi-
tions of excessive load, execution becomes more efficient (~1.3x
faster): as the load increases, the difference in execution time be-
tween data parallelization and sequential processing becomes
increasingly significant.

5. FUTURE WORKS

While Qubx holds promise as a potent and dynamic tool in
its domain, there exist numerous opportunities for further expan-
sion and enhancement of its usability and adaptability.

Exploring new methodologies to optimize system perfor-
mance is crucial. This entails identifying and rectifying potential
inefficiencies in the existing codebase while also experimenting
with novel approaches to resource sharing and synchronization
logic.

To augment the versatility and utility of the library, it would
be beneficial to contemplate integrating new features. For in-
stance, incorporating tools for audio data synthesis, analysis, and
processing could greatly enhance its functionality and appeal to a
broader user base. Additionally, considering the involvement of a
community of contributors is essential. Such a community brings
with it a diverse range of perspectives, skills, and ideas, ensuring
continuous support and maintenance for the library while foster-
ing innovation and growth. Collaboration with a community can
lead to accelerated development and the implementation of valu-
able enhancements, ultimately driving the evolution of Qubx as a
leading solution in its field.

6. REFERENCES

[1] R. L. Kruse, “Data Structures & Program Design, Eng-
lewood Cliffs”, New Jersey: Prentice Hall, 1987.

[2] J. Bullinaria, “Data Structures and Algorithms”, Lecture
notes, University of Birmingham, 2019, Available at
https://www.cs.bham.ac.uk/~jxb/DSA/dsa.pdf, Accessed
February 16, 2024.

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

450

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 DAFx.8

[3] B.V. Zanden, “Queues”, Lecture notes CS140 Data Struc-
tures, University of Tennessee, 2010, Available at
https://web.eecs.utk.edu/~bvanderz/teaching/cs140Fa10/not
es/Queues/, Accessed February 16, 2024.

[4] S. Mohapatra, “Data Structure Using C”, CET, Bhudanes-
war, 2020, Available at
https://www.cet.edu.in/noticefiles/280_DS%20Complete.pd
f, Accessed February 16, 2024.

[5] R. Thrareja, “Data Structures Using C”, Oxford University
Press, Second Edition, 2014.

[6] IIT Kharagpur, “Stacks and queues”, CS13002 Program-
ming and Data Structures, IIT Kharagpur, 2006, Available
at https://cse.iitkgp.ac.in/pds/notes/stackqueue.html, Ac-
cessed February 16 2024.

[7] B. Sonntag, and D. Colnet, “RIP Linked List”, arXiv pre-
print arXiv:2306.06942, 2023.

[8] D. Hoang, “Performance of array vs. linked-list on modern
computers”, Available at
https://dzone.com/articles/performance-of-array-vs-linked-
list-on-modern-comp, Accessed February 20, 2024.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
“Introduction to Algorithms Third Edition”, MIT Press,
2009.

[10] L. Spracklen, and S. G. Abraham, “Chip multithreading:
opportunities and challenges”, In 11th International Sympo-
sium on High-Performance Computer Architecture, San
Francisco, CA, USA, 2005, pp. 248-252.

[11] P. Ancilotti and M. Boari, “Programmazione concorrente e
distribuita”, McGraw-Hill, 2007.

[12] C. Filira, G. Filira, F. Filira, and M. Moro, “Sistemi operati-
vi: Architettura e Programmazione concorrente, 2a edizione
Vol. 1, Edizioni Libreria Progetto, 2006.

[13] M. A. Kiefer, K. Molitorisz, J. Bieler and W. F. Tichy,
“Parallelizing a Real-Time Audio Application -- A Case
Study in Multithreaded Software Engineering,” IEEE Inter-
national Parallel and Distributed Processing Symposium
Workshop, Hyderabad, India, 2015, pp. 405-414, doi:
10.1109/IPDPSW.2015.32.

[14] A. Chaudhary, A. Freed, and D. Wessel, “Exploiting Paral-
lelism in Real-Time Music and Audio Applications, Com-
puting in Object-Oriented Parallel Environments,” Third In-
ternational Symposium, ISCOPE 99, San Francisco, CA,
USA, 1999, doi: 10.1007/10704054_5.

[15] J. Jiménez-Sauma, “Real-Time Multi-Track Mixing For
Live Performance,” Zenodo, 2019.

[16] R. Angelov, and A. Ezequíel Viso, “Implementing Real-
Time Parallel Audio DSP on GPUs,” Audio Developer Con-
ference, 2022.

[17] T. Doumler, “Thread synchronisation in real-time audio
processing with RCU (Read-Copy-Update),” Audio Devel-
oper Conference, 2022.

[18] M. Noseda, F. Frei, A. Rust, and S. Kunzli, “Rust for secure
iot applications: why c is getting rusty,” In Embedded World
Conference 2022, Nuremberg, 21-23 June 2022. WEKA,
2022.

[19] A. Balasubramanian, M. S. Baranowski, A. Burtsev, A.
Panda, Z. Rakamaric, and L. Ryzhyk, “System program-
ming in rust: Beyond safety,” In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, pp. 156–
161, 2017.

[20] M. Emre, R. Schroeder, K. Dewey, and B. Hardekopf,
“Translating c to safer rust,” Proceedings of the ACM on
Programming Languages, vol. 5, no. OOPSLA, pp. 1–29,
2021.

[21] M. P. Rooney, and S. J. Matthews, “Evaluating FFT per-
formance of the C and Rust Languages on Raspberry Pi
platforms,” In 2023 57th annual Conference on Information
Sciences and Systems (CISS), (pp. 1-6). IEEE, 2023.

[22] C. Fougeray, “Rust for Low Power Digital Signal Pro-
cessing,” Available at
https://interrupt.memfault.com/blog/rust-for-digital-signal-
processing#fn:4, Accessed May 3, 2024.

[23] A. Namavari, “DAWPL: A Simple Rust Based DSL For
Algorithmic Composition and Music Production”, Standford
University USA, 2017.

[24] M. Puckette, “Multiprocessing for pd,” in Proc. of the 3rd
Int’l Pure Data Convention (PDCON09), 2009.

[25] S. Letz, Y. Orlay, D. Fober, “Work Stealing Scheduler for
Automatic Parallelization in Faust,” In Linux Audio Confer-
ence, 2010.

[26] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Rus-
sell, D. Sarma, and M. Soni, “Read-copy update,” In AUUG
Conference Proceedings, (Vol. 175), AUUG, Inc., 2001.

[27] P. E. McKenney, and J. D. Slingwine, “Read-copy update:
Using execution history to solve concurrency problems,”
In Parallel and Distributed Computing and Systems, (Vol.
509518, pp. 509-518), 1998.

[28] Crill, Cross-Platform Real-Time I/O and Low-Latency Li-
brary, Available at https://github.com/crill-dev/crill, Ac-
cessed May 15, 2024.

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

451

@inproceedings{DAFx24_paper_43,
 author = "Mainolfi, Pasquale",
 title = "{QUBX: Rust Library for Queue-Based Multithreaded Real-Time Parallel Audio Streams Processing and Management}",
 booktitle = "Proceedings of the 27-th Int. Conf. on Digital Audio Effects (DAFx24)",
 editor = "De Sena, E. and Mannall, J.",
 location = "Guildford, Surrey, UK",
 eventdate = "2024-09-03/2024-09-07",
 year = "2024",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 doi = "",
 pages = "444--451"
}

