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ABSTRACT
In this paper, we address automating and systematizing the pro-
cess of finding black-box models for virtual analogue audio effects
with an optimal balance between error and latency. We introduce
a multi-objective optimization approach based on hardware-aware
neural architecture search which allows specifying the optimiza-
tion balance of model error and latency according to the require-
ments of the application. By using a regularized evolutionary al-
gorithm, it is able to navigate through a huge search space system-
atically. Additionally, we propose a search space for modelling
non-linear dynamic audio effects consisting of over 41 trillion dif-
ferent WaveNet-style architectures. We evaluate its performance
and usefulness by yielding highly effective architectures, either
up to 18× faster or with a test loss of up to 56% less than the
best performing models of the related work, while still showing a
favourable trade-off. We can conclude that hardware-aware neu-
ral architecture search is a valuable tool that can help researchers
and engineers developing virtual analogue models by automating
the architecture design and saving time by avoiding manual search
and evaluation through trial-and-error.

1. INTRODUCTION

Black-box modelling of virtual analogue audio effects has become
an important topic of interest in the digital audio effects com-
munity [1, 2, 3, 4, 5, 6, 7, 8] over the last few years. Machine
learning methods such as deep neural networks (DNNs) in combi-
nation with modern hardware for accelerated training have made
it possible to implement data-driven black-box approaches with
high quality. A popular approach to implement black-box mod-
els is using feed-forward temporal convolutional neural networks
(TCNs) [6] or variants like Google DeepMind’s WaveNet [9].

However, choosing or designing an appropriate network archi-
tecture for a specific audio effect model while considering model
quality and latency has shown to be a very tedious and manual pro-
cess [5]. The architecture of those networks is highly variable in
several hyper-parameters such as number of layers, length of con-
volutional filters per layer, number of channels, activation func-
tions and so on. Hybrid forms of TCNs and WaveNets are also
possible. These design choices can have a significant influence on
the quality of a black-box model’s output but will also impact its
latency. In order to find an acceptable balance between model pre-
diction error and inference latency, many different architectures
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Figure 1: The general framework of neural architecture search.
Adapted from [10]

have to be carefully trained and evaluated. It is a difficult effort
to systematize this due to the large number of possible architec-
tures in the search space and the interdependence of the various
hyper-parameter choices in their impact on model performance.

With this paper, we propose a solution to this multi-objective
optimization problem. We describe our approach based on hard-
ware-aware neural architecture search (HW-NAS) [11] driven by
an evolutionary algorithm (EA). Our approach lets users specify
the balance of the loss-latency trade-off and relieves them of man-
ually designing and evaluating candidate network architectures ac-
cording to their quality and latency requirements. We also propose
a search space that is suitable for modelling non-linear dynamic
audio effects. It offers a wide range of options to explore the loss-
latency landscape and arrive at an optimum in reasonable time.
Our approach and the search space are evaluated on distortion ef-
fects from the IDMT-SMT-Audio-Effects data set [12]. In the eval-
uation we test the following hypotheses:

1. HW-NAS can automate the design of black-box models for
non-linear dynamic audio effects that outperform models
from the related work which are designed with other meth-
ods.

2. Specifying a balance parameter β in the fitness function
leads the evolutionary search to yield either faster or more
accurate models.

The remainder of this paper is structured as follows. In Chap-
ter 2 we analyse the related work with respect to systematic design
for model accuracy and latency. In Chapter 3 we present our ap-
proach and discuss our design decisions for the HW-NAS search
space, search strategy and evaluation strategy (cf. Figure 1). We
evaluate our system in Chapter 4 and discuss our findings. Chap-
ter 5 concludes our paper. In the end, we discuss meaningful ex-
tensions to our approach that will facilitate optimized architecture
search for deployment on embedded audio hardware.
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2. DESIGN EFFICIENCY AND COMPLEXITY OF
VIRTUAL ANALOGUE MODELS

The following chapter discusses different approaches to audio ef-
fects modelling and highlights their challenges with respect to de-
sign, implementation and achieving a favourable trade-off between
model accuracy and computational complexity. Its aim is to under-
stand the shortcomings of existing approaches to facilitate the de-
velopment of a solution that can address these issues by automat-
ing the design of accurate and latency-efficient black-box models.

2.1. White-box modelling

Traditionally, virtual analogue modelling of non-linear audio ef-
fect circuits has been performed with white-box models such as
wave digital filters, modified nodal analysis or state-space
approaches [13]. This requires complete knowledge of the cir-
cuit under analysis, meaning the accurate voltage/current relation-
ships at each port need to be known. Acquiring this knowledge
may involve tracing circuits, analysing mechanics and physics and
performing numerous measurements. The complexity of these ap-
proaches increases the more non-linearities are taken into account.
In theory, if the circuit is precisely modelled and implemented in
the digital domain, the results can sound close to perfect. However,
the trade-off between model quality and complexity respective la-
tency needs to be considered and carefully tuned. Thus, in practise,
an optimal trade-off is hard to achieve and takes a lot of time and
expertise [14]. Due to the complex implications that optimizing
for one objective has on the other, this tuning process is difficult to
automate [15].

2.2. Grey-box modelling

Grey-box models try to reduce the knowledge required to repro-
duce the behaviour of an audio effect by employing a partially
data-driven approach [16, 17]. This enables such models to inte-
grate information gathered from data with prior knowledge. Usu-
ally, only knowledge about the basic circuit topology of an audio
effect device is required or may be assumed. Some parameters
of those grey-box models are then fitted to input/output data pro-
duced with the device using trial and error, grid search or machine
learning techniques. For example, simple neural networks may be
used to learn a parameter distribution that simulates the behavior of
device controls, ultimately integrating black-box sub-models into
the overall system model [17]. Another grey-box approach uses
differentiable digital signal processing blocks which can be jointly
trained end-to-end as layers within a DNN model [18].

The quality and reliability of grey-box models often depends
on the extent to which verifiable knowledge of the circuit under
analysis is available. If those parts of the model derived from data
are not too complex, a grey-box model often remains interpretable.
The structure of a grey-box model is typically very specific and
only applicable for one class of audio effects, for example, dy-
namic range compression [17], due to the knowledge and assump-
tions about the circuit topology included into the design. The com-
plexity of such a model may be adjustable within certain bounds,
so that a compromise between model accuracy and computational
costs is possible [17]. Due to the nature of grey-box models in-
tegrating both white-box and black-box concepts, the task of au-
tomating the model design in terms of a trade-off between error
and latency consequently involves the challenges of both design
approaches.

2.3. Black-box modelling

Black-box modelling sits on the other extreme end of the spectrum
and (theoretically) requires no knowledge of the inner workings
of the circuit under analysis. The behaviour is modelled solely
based on observations of output signals generated when fed with
input signals. Usually, black-box models are implemented by deep
learning. Mainly, two different classes of DNN architectures have
been employed for this task: feed-forward and recurrent neural
networks. WaveNets or, more generally, feed-forward TCNs have
been used by numerous works in the last few years, for example,
to model the non-linear dynamic behaviour of tube amplifiers and
distortion circuits [5] or of optical dynamic range compression [6].
Alternatively, recurrent neural networks (RNNs) like long short-
term memory (LSTM) networks have been employed for similar
applications [3, 4, 8].

Their advantage lies in the potential to find accurate mathe-
matical models which approximate the behaviour of a circuit un-
der analysis solely based on input/output pairs without having to
explicitly specify the parameters of a model. Those parameters
which yield the most accurate model are automatically determined
by training the model with error back-propagation and gradient
descent. Moreover, they are conceptually simple, easy to train and
to use and can often be processed in parallel [19]. However, the
general structure of the mathematical model, that is, the neural
network architecture, must be determined a priori. Manual design
and fine-tuning of neural network architectures demands expertise
and experimentation which consumes time and can be an error-
prone process as well, not least due to confirmation biases. Due to
the opaque nature of DNN-based black-box models, it is difficult
to analyse them or to compute dynamic characteristics from them
[20]. Lastly, DNNs require diverse data in large quantities to avoid
overfitting which can pose another challenge [19].

2.3.1. Model quality and latency of TCNs and RNNs

In several works both or a combination of WaveNet-style neural
networks and recurrent neural networks have been used and com-
pared [1, 4, 5, 6, 7]. When discussing model quality and processing
latency, the related work is divided to some extent. Wright et al. [4]
evaluated their own C++ implementations of LSTM and WaveNet
architectures on a Intel Core i5 2.8 GHz CPU. They measured
an 1.5× up to 4.5× faster inference speed for LSTMs compared
to the WaveNet architectures while achieving a similar error-to-
signal ratio (ESR) when modelling the Blackstar HT-1 tube ampli-
fier and the Electro-Harmonix Big Muff Pi distortion/fuzz pedal,
respectively. Steinmetz and Reiss [6], on the other hand, evaluated
Python implementations of both TCN and LSTM architectures on
a CPU and a GPU, respectively, using the PyTorch deep learn-
ing framework. They find their causal TCNs to run up to 37.3×
faster than real-time on an Nvidia RTX 3090 GPU and up to 5.0×
on a Intel Core i7-8850H 2.6 GHz CPU. On the other hand, al-
though using 32× less parameters than their TCN-300-C archi-
tecture, their LSTM network with 32 hidden units achieved 2.8×
real-time on a GPU and only 0.9× on a CPU, even when compiled
via TorchScript. Moreover, the LSTM required over 8× longer to
train until convergence (108 hours) compared to the TCN-300-C
model (13 hours).

In these works, a range of architecture configurations is ex-
plored and it becomes apparent that their performance is depen-
dent on many factors: the audio effect to model, the efficiency
of the implementation of the neural network and its inference run-

DAFx.2

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

66



Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

time as well as the hardware platform the model is deployed on. To
the best of the authors’ knowledge, there has not been a systematic
study that analyses these factors for TCNs and RNNs in the context
of real-time virtual analogue modelling, yet. The most extensive
study so far has been done by Wright et al. [5]. They analysed the
impact certain hyper-parameter configurations of their WaveNets
and LSTMs have on the processing latency and on the ESR, effec-
tively performing a grid search. They employed a fixed WaveNet-
style DNN structure and varied the number of layers, the number
of convolution channels for the entire network and the activation
functions for the entire network (using tanh, ReLU, Gated and
SoftGated). They plotted the processing speed as a function of the
number of convolution channels with different choices of activa-
tion functions or number of layers. For each of the three distor-
tion effects they modelled, they determined an architecture which
showed the best trade-off between error and processing speed. The
LSTM was varied only in the number of hidden units. Even though
various combinations are examined in this paper, a thorough analy-
sis that considers the trade-off between error and latency for other
possible hyper-parameter combinations, as well as an automated
approach, is missing.

2.3.2. Challenges

As outlined above, there are many design decision which influ-
ence the performance of a model with regards to error and in-
ference latency. With increased demand for acoustically accurate
modelling of analogue audio effects, the requirements on latency
become harder to meet. The computational complexity increases
with more details and non-linearities of the original analogue ef-
fects unit that the digital model is expected to reproduce [5].
Whereas in music studio environments latency of audio effect plu-
gins may be less of a problem when working with pre-recorded au-
dio, live performance scenarios require very low latencies in order
to be as non-disruptive to the performing artist as possible. This
results in differing requirements for different scenarios: in offline
processing environments with sufficient computing power, model
accuracy is often favoured at the expense of latency, whereas in
online processing environments like live music performances, low
latency is of utmost priority, while some sonic details of more ac-
curate models can be neglected.

Albeit powerful in representation capacity, using large DNNs
for black-box models demands plenty of time for inference [7].

Figure 2: Overview of proposed black-box modelling system.

Going for smaller or less complex networks requires less compu-
tational effort which has a positive impact on inference latency
but potentially affects model accuracy [5, 6]. With the endless op-
tions there are to design DNN architectures, the question becomes:
How to choose a design that provides an optimal balance between
model accuracy and inference latency? The main challenge that
we want to address with our approach is providing a systematic
and automated solution to this question.

3. HW-NAS APPROACH

In this chapter, we want to propose our solution to the aforemen-
tioned challenges. We present our approach based on HW-NAS,
the search space, the search strategy and the evaluation strategy
(cf. Figure 1) and discuss our design decisions.

3.1. System overview

We choose to use HW-NAS to address the challenges mentioned
in section 2.3.2 and to enable us to efficiently build dedicated, ac-
curate and time-efficient black-box models for each audio effect.

The relatively new field of neural architecture search (NAS)
aims at automating the DNN design process to some extent [10].
It intents to replace the manual effort in determining a suitable
model architecture by automated experimentation and manipula-
tion of the architecture, often aided by a separate artificial intelli-
gence like RNNs or EAs. However, NAS solely focuses on max-
imizing the predictive quality of a DNN without considering the
resource consumption of its implementation on a given hardware
platform like a GPU or CPU. Furthermore, the optimal DNN ar-
chitecture for a task and platform can vary significantly depend-
ing on what costs must be optimized – be it latency, energy con-
sumption, memory consumption, etc. An extension of NAS called
hardware-aware neural architecture search (HW-NAS) attempts to
address this problem. It takes estimates (or measurements) of
the resource consumption of a particular DNN implementation
on a particular hardware platform into account for the automated
search [11]. The hardware-aware property allows us to consider
hardware-dependent metrics like inference latency in our search.

A NAS system uses a search strategy to systematically explore
a search space describing a very large number of DNN architec-
tures and evaluates them according to an evaluation strategy. In
our system, part of this evaluation strategy must be to calculate an
appropriate error metric for the black-box modelling task at hand
and optimize it as a loss function. Figure 2 shows schematically
how the HW-NAS system produces candidate DNN architectures
ĝk that are trained by comparing their output ŷ to the output y of
an audio effect g to model when given the same input x.

In the remainder of this chapter, we will describe how we built
our HW-NAS system to accomplish our set goals. Our system has
been built in Python with the Retiarii framework by Microsoft’s
Neural Network Intelligence1.

3.2. Search space

Our search space is intended to serve as a basis for modelling non-
linear dynamic audio effects such as overdrive, distortion, fuzz and
dynamic range compression. We therefore based our design on the
causal, feed-forward TCN and WaveNet architectures introduced
by Steinmetz et al. [6] and Wright et al. [5].

1https://nni.readthedocs.io/en/v2.10/
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Figure 3: TCN example structure. Adapted from [6]

Figure 4: WaveNet example structure.

The basic structure of a TCN in the style of Steinmetz et al.
is illustrated in Figure 3. It is a sequential structure built from
a number of repeated temporal convolutional blocks. Each block
consists of a dilated, causal convolution filter (with a fixed channel
depth), a batch normalization, a parametrized rectified linear unit
(PReLU) and a residual connection. The residual connection is lin-
early scaled by a 1×1 convolutional kernel with the same channel
depth. The dilation factor grows exponentially per layer, depend-
ing on its depth and the stack size which resets the exponent. The
PReLU activation function is defined in Equation 1, where α is a
learnable array with the same shape as x. We removed the condi-
tioning module from the structure introduced by Steinmetz et al.,
but reintroduced causal padding as implemented in the first version
of their paper to ensure the input and output dimensionalities are
equal.

PReLUα(x) =

{
α · x if x ≤ 0

x if x ≥ 0
(1)

GatedActivation(x,H) = tanh (Hf ∗ x) · σ(Hg ∗ x) (2)

The basic structure of a WaveNet in the style of Wright et al. is
illustrated in Figure 4. It follows a similar sequential structure to
the TCN with a few differences. The internal structure of its TCN
block replaces the PReLU activation with a gated activation [9]
which is defined in Equation 2. Hf and Hg are filter and gate
convolution kernels and can each be considered as one half of
the convolutional kernel H split along the depth dimension. σ is
the logistic sigmoid function generating the gating signal. A fi-
nal 1 × 1 convolutional kernel restores the output dimensionality

Table 1: Hyper-parameter options in our proposed search space.

Hyper-parameter Options
Linear mixing layer + skip con. false, true

Number of blocks 1, 2, 3, 4, 5, 6, 7
Dilation growth 2, 4, 6, 8, 10

Stack size 1, 3, 5, 7
Convolution channels 2, 4, 8, 16, 32
Kernel size (per block) 3, 5, 7, 9, 11, 13, 15, 17

Residual convolution (per block) false, true
Activation function (per block) PReLU, Gated

after the gated activation. The output of the WaveNet is not the
output of the last TCN block, though. Each block has a skip con-
nection that leads to a linear mixing layer which sums and scales
the results of all TCN blocks to produce the final output of the
network. The linear mixing layer is taken from Wright et al. [5]
and replaces the more complex original non-linear post-processing
module [9]. The underlying system model of TCNs and WaveNets
can be considered a cascade of Wiener models [5]. Each convo-
lutional filter is a linear time-invariant system with finite impulse
response and learnable coefficients, which is followed by a static
non-linear activation function to approximate a non-linear stateful
filter. Using only causal temporal convolutions limits the model to
consider only current and past input values, which conforms to the
causal nature of implementable analogue systems. Our layer-wise
search space subsumes these basic structures and parameterizes
them with the options shown in Table 1 to generate a range of dif-
ferent architectures from TCNs, WaveNets and in between. Each
of the seven blocks except the first can be deactivated. In total,
this yields 41.231.686.041.600 different hyper-parameter combi-
nations in our search space. Each resulting architecture can be eas-
ily built with our generator code. By providing a vast search space
with learnable Wiener-style models of different size and complex-
ity, we make very few assumptions about the design of the circuit
under analysis, and so should be able to model of a broad range of
non-linear dynamic systems.

3.3. Search strategy

The search strategy is responsible for exploring and updating the
search space to find the “best” architectures. The most commonly
used search algorithms in HW-NAS are random search, grid search,
evolutionary algorithms (EAs) and reinforcement learning algo-
rithms. In recent years, new upcoming search algorithms are
gradient-based methods which require a specially designed search
space and relaxations of non-differentiable hardware metrics [11].

With over 41 trillion possible candidates in the search space,
more trivial algorithms like random search or grid search are too
uniform and provide too little coverage. According to the sur-
veys [10, 11] there is no clear preference between RLs and EAs
for HW-NAS. We decided to use an EA for our system with a
random initialization phase. After initializing a first population of
architectures as a starting point, EAs consist of four steps that are
reiterated multiple times:

1. Select parents from the population for reproduction.

2. Apply mutation operations to create new individuals.

3. Evaluate the fitness of the new individuals.

4. Select the survivors of the population.
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Figure 5: Overview of the proposed search algorithm. Colour coding analogous to Figure 1.

An overview of the different phases is illustrated in Figure 5.
In the random initialization phase the initial population is created
by performing a random search over the entire search space for
P trials, where P is the size of the population. We set P = 150.
Each trial yields one architecture which is then evaluated for its
loss and latency which contribute to its overall fitness. This step
will be further detailed in the next Section 3.4. For the second
phase, we chose to use a slightly modified regularized EA from
Real et al. [21] in our search strategy. In the beginning, a ran-
dom sub-population of 20% is sampled and ranked by their fitness
value. Since the regularized EA is an aging EA that introduces an
“age property” and keeps track of which architecture is the old-
est in the population, the oldest one is discarded. The architecture
of the fittest model, the so-called parent architecture, is randomly
mutated into a child architecture. The expected value of mutations
per iteration is set to E(p) = 1.5 with p = 1.5

31
, since 31 adjustable

hyper-parameters are available (cf. Table 1). The new architecture
is evaluated for loss and latency again and added to the population.
The overall procedure lasts for T = 1000 trials maximum. This
algorithm has the advantage that the random population from the
beginning is systematically refined and filtered for its fittest and
most promising candidates. Since only 20% of the population are
considered in each trial, the algorithm maintains several promising
candidates in parallel. After the final trial, the fittest architecture
of the entire search history is trained until convergence and yields
the final, optimal model.

3.4. Evaluation strategy

The purpose of the evaluation strategy is to rank the candidate ar-
chitectures according to our specified optimization objectives. Our
goal is to find models with an optimal balance between error and
latency. In the following, we describe how we acquire these met-
rics and how we combine them into an optimization objective that
is used for the fitness value.

We calculate loss functions based on both time and frequency
in accordance with Steinmetz et al. [6]. We use the L1 loss for
the time-domain component Ltime and the multi-resolution Short-
Time Fourier Transform error for the frequency-domain compo-
nent Lfreq [22]. The final loss function can be seen in Equation 3.

In contrast to Steinmetz et al. [6], we chose α = 75. This value
was iteratively determined so that at convergence both components
contribute approximately equally to Loverall and thus neither of the
components dominates the term during optimization.

Loverall(yi, ŷi) = Ltime(yi, ŷi) + α · Lfreq(yi, ŷi) (3)

In order to optimize the runtime performance of the search,
we use two techniques for loss approximation [11]. We employ
early stopping on the validation loss with a patience of 10 epochs,
∆min = 0.0005 and a maximum of 50 training epochs. Fur-
thermore, the models are trained only with 16-bit half-precision
floating point numbers, whereas they are trained with 32-bit full-
precision for the final evaluation. This further speeds up the search
while still giving a reasonable approximate for the fitness compu-
tation. The latency of the PyTorch implementation is measured
directly on the CPU with the help of the torch.profiler package. A
randomized input vector resembling 2 seconds of mono audio is
prepared and fed into the model once for warming up. Then, the
latency is averaged over 25 consecutive inferences to minimize the
impact of variance on the measurement.

When optimizing for an optimal trade-off between model er-
ror and inference latency, we are looking at a multi-objective op-
timization problem with model error and inference latency as co-
optimization objectives. To simplify the search, we use the scalar-
ization method [11] to combine both objectives into a single fitness
function. Specifying a balance parameter β in the fitness function
that increases or decreases the impact that either of those objec-
tives have on the fitness function, leads the evolutionary search to
yield either faster or more accurate models. The final fitness func-
tion f is described by Equation 4, with Lval being the overall loss
on the validation data set according to Equation 3 and t∆ denoting
the inference latency in milliseconds. Higher values for β increase
the influence that lower losses (Lval ≪ 0) have on the fitness.

f =
10β

Lβ
val · t∆

(4)
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Table 2: Baseline architectures.

Hyper-parameter TCN-100-C [6] TCN-300-C [6] WaveNet1 [5] WaveNet2 [5] WaveNet3 [5]
Number of blocks 4 4 10 18 18

Linear mixing layer + skip con. false false true true true
Dilation growth 10 10 2 2 2

Stack size 4 4 10 9 9
Convolution channels 32 32 16 8 16

Kernel size (all blocks) 5 13 3 3 3
Residual convolution (all blocks) true true false false false
Activation function (all blocks) PReLU PReLU Gated Gated Gated

4. EXPERIMENTS

In this chapter, we first detail our experiment setup. Then we
describe the experiments that we performed, compare our results
with the baseline architectures and discuss our findings.

4.1. Experiment setup

4.1.1. Data set

For our evaluation, we used the IDMT-SMT-Audio-Effects data
set [12] by the Fraunhofer Institute, which is a popular data set
in the DAFx community [2, 4, 5, 7, 16]. It is developed for au-
tomatic detection of audio effects in recordings of electric guitar
and bass and related signal processing tasks. It provides clean
and effected audio data of two different guitars and bass guitars,
each with two different pick-up settings and up to three different
plucking styles. Considering only the clean, unprocessed audio
samples, there are 624 unique bass guitar recordings, 624 unique
monophonic guitar recordings and 420 unique polyphonic guitar
recordings. The monophonic recordings cover the common pitch
range of a 4-string bass guitar respective the common pitch range
of a 6-string electric guitar. The polyphonic recordings contain
simple triads as well as more complex, dissonant chords. Each
recording is a mono WAV file, has a duration of exactly 2 seconds,
is sampled with 44.1 kHz and a resolution of 16 bits. The record-
ings are randomly split into fixed data subsets of 60% for training,
20% for validation and 20% for testing.

Additionally, each of those audio samples is processed with
a range of different audio effects. We used the effects coded with
“4412” and “4413” for the black-box modelling task. They are dig-
ital emulations; “4412” is the “Screaming Distortion” by Cubase
and “4413” is the “MDA Overdrive” by MOD Audio. Each ef-
fect is applied with fixed control settings. “4412” has its “Drive”
control set to 95% and its “Contour” set to 90%, whereas “4413”
has its “Drive” set to 40% and its “Muffle” control set to 40%.
This results in a harsh, distorted sound for “4412” and a smoother,
less distorted sound for “4413”. Although digitally emulated, the
effects sufficiently serve the purpose of demonstrating the perfor-
mance of our system and the influence of the balance parameter β.

4.1.2. Hardware

Our training hardware consists of 2 separate servers, hosting 4×
and 3× Nvidia Quadro RTX8000 GPUs, respectively. Each GPU
has 48 GB of GDDR6 ECC VRAM. We used the GPUs for paral-
lelizing and accelerating the training of the candidate architectures.
Each server also hosts 2× AMD EPYC 7252 8C 3.10 GHz CPUs
with 256 GB RAM. The CPUs were used to evaluate the models

and to measure their inference latency. Both servers run Ubuntu
22.04.4 LTS and the Nvidia CUDA Toolkit 11.7.

4.1.3. Configuration

In order to test our hypotheses, we performed a number of experi-
ments.

For the first hypothesis, we took the TCN-100-C, TCN-300-
C, WaveNet1, WaveNet2 and WaveNet3 architectures from the
related work as a baseline. TCN-100-C and TCN-300-C have a
receptive field of around 100 ms and 300 ms, respectively, and
are developed to model the LA-2A optical dynamic range com-
pression unit [6]. TCN-100-C is the smallest and fastest network
presented in that work. According to Wright et al. [5], WaveNet1
is the fastest of their models, having the worst ESR on the valida-
tion data. WaveNet3 is the slowest model, having best ESR on the
validation data. WaveNet2 is an intermediate model. In the origi-
nal work, all three architectures are used for the simulation of the
Ibanez Tube Screamer, the Boss DS-1 and the Electro-Harmonix
Big Muff Pi. All architectures are built with our own generator
code by instantiating them with the hyper-parameters described in
Table 2, in order to eliminate any implementation-dependent ef-
fects on their performance and evaluate only the capabilities of the
respective architectures. They are trained on the clean input data
and the “4412” as well as “4413” target data from the training data
set. The models with the lowest loss according to Equation 3 on
the validation data set are exported as the best-performing mod-
els. The final numbers used for the evaluation are taken from their
performance on the test data set.

For the second hypothesis, we performed seven HW-NAS ex-
periments. We performed one set of experiment runs for the mod-
elling of the “Screaming Distortion” and the “MDA Overdrive”
each. In each set, we did three experiment runs while choosing the
balance parameter of Equation 4 to either one of β ∈ {3, 7, 10}.
With smaller values of β, we expect the HW-NAS to prefer faster
models at the expense of accuracy. With higher values of β, we ex-
pect the HW-NAS to prefer more accurate models at the expense
of inference speed. For the “Screaming Distortion”, we performed
an additional experiment with β = 2 to further explore the lower
limit regarding latency. We set a budget of 96 GPU hours for train-
ing, which translates to a runtime of 24 hours on the server with
4 GPUs and 32 hours on the server with 3 GPUs. All GPUs were
used in parallel for training. Those architectures that achieved the
highest fitness score of an experiment run were used for the final
evaluation. In the final evaluation, each architecture was trained
for a maximum of 100 epochs. Early stopping was used on the val-
idation loss with a patience of 10 epochs but with ∆min = 0.0001
which waits until the convergence plateau is reached.
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Table 3: HW-NAS result architectures for different effects and different values of β. “—” denotes a block is not present, i.e., not selected.

Audio effect 4412 4413
Balance β = 2 β = 3 β = 7 β = 10 β = 3 β = 7 β = 10

Linear mixing layer + skip con. false false false true false false false
Dilation growth 4 6 10 6 4 8 8

Stack size 7 7 5 7 7 5 5
Convolution channels 8 8 16 32 2 8 16

Kernel size 11 11 9 11 13 5 5
TCN block #1 Residual convolution false false true false true true true

Activation function Gated PReLU Gated PReLU Gated Gated Gated
Kernel size 15 9 15 5 5 13 9

TCN block #2 Residual convolution false false false false false true false
Activation function PReLU Gated Gated Gated PReLU PReLU Gated

Kernel size 17 11 7 17 9 5
TCN block #3 Residual convolution true false false true — false true

Activation function PReLU Gated PReLU Gated Gated Gated
Kernel size 7 9 9 9 7

TCN block #4 Residual convolution — false true false — false false
Activation function Gated Gated Gated Gated Gated

Kernel size 13 9 9 11 13
TCN block #5 Residual convolution — false false false — false true

Activation function Gated Gated PReLU Gated PReLU
Kernel size 5 9 11 11

TCN block #6 Residual convolution — — true false — true true
Activation function Gated PReLU Gated PReLU

Kernel size 5 11
TCN block #7 Residual convolution — — — — — true false

Activation function PReLU Gated

Table 4: Test loss and latency comparison. Ltest is computed with Equation 3, t∆ is measured per inference on 2 seconds of audio.

Effect Metric TCN100C TCN300C WaveNet1 WaveNet2 WaveNet3 β = 2 β = 3 β = 7 β = 10

4412 Ltest 0.0092 0.0075 0.0083 0.0087 0.0081 0.0066 0.0050 0.0038 0.0033
t∆ [ms] 276.0 310.4 110.1 117.7 211.9 26.1 41.3 100.2 504.1

4413 Ltest 0.0073 0.0069 0.0062 0.0060 0.0053 — 0.0129 0.0052 0.0045
t∆ [ms] 261.9 321.4 114.2 108.7 206.8 — 5.9 62.6 99.7

4.2. Results

In Table 3 the fittest architectures of each experiment run are shown.
It is clearly visible that smaller values for β prefer architectures
with less TCN blocks since they introduce additional latency. Sim-
ilarly, smaller values for β prefer architectures with less convo-
lution channels, whereas higher values lead to a greater number
of channels, increasing the size of the filter bank that each causal
convolution layer represents. Only for the audio effect “4412”, a
WaveNet structure with skip connections and a linear mixing layer
is chosen. In comparison, residual convolutions are more likely to
be chosen for the audio effect “4413”.

As can be inferred from Table 4 for the simulation of effect
“4412”, our fastest model (β = 2) is 4.2× faster than the fastest
model from the related work (WaveNet1) while still achieving a
20% lower loss, being even lower than all selected models from
the related work. Our most accurate model (β = 10) achieves
a 56% lower loss than the most accurate model from the related
work (TCN-300-C), being 1.6× as slow, while still being around
4× faster than real-time on the AMD EPYC 3.10 GHz CPU. For
the simulation of effect “4413”, our fastest model (β = 3) is
around 18× faster than the fastest model from the related work

(WaveNet2). However, its loss is also about 115% higher. This is
by design since we told the evaluation strategy to prefer lower la-
tency and, if needed, sacrifice accuracy. Our most accurate model
(β = 10) achieves a 15% lower loss than the most accurate model
of the related work (WaveNet3) while still being about 2× faster,
similarly fast to WaveNet2.

In general, all evaluated models can simulate both effects with
reasonable accuracy. Listening tests show that all models sound
fairly similar. While those models with the lowest loss values
produce audio which is virtually indistinguishable from the tar-
get, those models with higher loss values tend to over- or under-
saturate and produce slight artifacts when presented with hiss or
other non-musical noise.

5. CONCLUSIONS

For this paper, we developed an approach to automatically design
black-box models for non-linear dynamic audio effects based on
hardware-aware neural architecture search. We analysed the re-
lated work and demonstrated the need for a systematic approach
that addresses the trade-off between model error and latency. We
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defined a search space that contains over 41 trillion different TCNs
and WaveNet-style architectures and a search strategy that can
navigate through this huge search space systematically and goal-
oriented. Introducing a balance parameter β in the fitness function
allows us to effectively influence said trade-off for the resulting
black-box model by putting more weight either on the model error
or on its inference latency. The performance of our system was
demonstrated in the evaluation. Our automated search found mod-
els either up to 18× faster or with a test loss of up to 56% less than
the best performing models of the related work, while still show-
ing a favourable trade-off. We hope that our approach can serve as
a valuable tool that can help researchers and engineers developing
accurate and time-efficient black-box models.

In the future, we want to address embedded target hardware
platforms with our approach. By using an automatic deployment
pipeline and incorporating a DNN-based inference latency estima-
tor into our evaluation strategy, we can systematically search for
architectures that will perform best on other hardware platforms.
Currently, we are working on such a system for a Raspberry Pi 4
with Elk Audio OS using WaveNetVA [5] as well as one for em-
bedded field-programmable gate arrays (FPGAs) by AMD/Xilinx.
For the latter, we are developing optimized DNN layer templates
that can be incorporated into our search space. We also plan to ex-
tend our approach to include LSTM-based DNN architectures for
the simulation of time-varying audio effects [16].
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