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ABSTRACT

Neural networks have found application within the Wave Digi-
tal Filters (WDFs) framework as data-driven input-output blocks
for modeling single one-port or multi-port nonlinear devices in
circuit systems. However, traditional neural networks lack pre-
dictable bounds for their output derivatives, essential to ensure
convergence when simulating circuits with multiple nonlinear el-
ements using fixed-point iterative methods, e.g., the Scattering It-
erative Method (SIM). In this study, we address such issue by em-
ploying Lipschitz-bounded neural networks for regressing nonlin-
ear WD scattering relations of one-port nonlinearities.

1. INTRODUCTION

Over recent years, numerous research works have focused on re-
fining digital models of vintage analog audio circuits, like sound
effect processors or synthesizers. The objective of these efforts
is to faithfully capture their unique timbral characteristics through
an accurate modeling of their circuit nonlinearities. Virtual Ana-
log (VA) modeling [1] identifies the set of digital signal process-
ing methods focused on digitally emulating analog audio circuits.
These methods can be generally classified into black-box and white-
box approaches. Black-box modeling approaches infer a global
model of a reference circuit relying on pairs of observed input and
output data [2, 3], while white-box approaches emulate the refer-
ence circuit by simulating the corresponding system of ordinary
differential equations [4, 5, 6].

Among white-box techniques, Wave Digital Filters (WDFs) [7]
have been widely employed in VA applications due to their inher-
ent modularity, efficiency, and stability properties [6, 8, 9]. Intro-
duced by A. Fettweis in the 1970s to design digital filter imple-
mentations of passive analog circuits [7], WDFs rely on a port-
wise linear mapping of Kirchhoff pairs of variables (voltage and
current) into pairs of wave variables (incident and reflected waves)
with the introduction of a scalar free parameter per port called port
resistance. Circuit elements and connection networks are modeled
in a separate fashion by means of input-output blocks described
by scattering equations. When interconnecting such input-output
blocks, the introduced free parameters are set, through the so-
called adaptation process, to eliminate as many implicit relations,
also named as delay-free-loops (DFLs), as possible.

Unfortunately, not all DLFs can be removed for all circuital
systems. On the one hand, linear circuit or circuits incorporating
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up to a single nonlinear one-port or multi-port element (charac-
terized by an explicit mapping) can be implemented in the Wave
Digital (WD) domain using stable discretization methods (e.g.,
trapezoidal rule) in a fully explicit fashion [10, 11]. On the other
hand, this is not generally the case for circuits containing multi-
ple nonlinearities, as not all the DFLs can be removed and itera-
tive solvers are required. Hence, several fixed-point and Newton-
Raphson (NR) methods have been developed in the literature for
the solution of such circuits in the WD domain [12, 13, 14, 15, 16].

Amongst others, the Scattering Iterative Method (SIM) [15,
17] is an efficient fixed-point method which is able to solve generic
circuits containing multiple nonlinear one-port elements using lo-
cal one-dimensional solvers. SIM distinguishes itself from other
WD fixed-point methods primarily by leveraging free parameters
to enhance convergence speed [8, 15].

Lately, the widespread adoption of deep learning has prompted
novel approaches for modeling nonlinear electrical components in
WDFs. Specifically, the so-called hybrid WDFs combine data-
driven neural models of nonlinear devices with traditional WD
blocks [18, 19, 20, 11]. This integrated approach offers dual ben-
efits. First, data-driven models enable the formulation of explicit
nonlinear scattering relations. As already demonstrated by Canon-
ical Piecewise Linear (CPWL) representations of nonlinear func-
tions [21, 22], this eliminates the necessity of analytically deriv-
ing an explicit scattering relation for a given nonlinear component,
which may not always be feasible. Second, when considering cir-
cuits with a single nonlinear component, thus characterized by ex-
plicit WD structures, these nonlinear component descriptions al-
low for highly computationally efficient implementations [11].

Unfortunately, the same methodology cannot be directly ex-
tended to circuits featuring multiple nonlinearities. This is due to
the fact that many of the theoretical results concerning WD itera-
tive methods are not readily transferable to the scenario involving
multiple neural network-based WD blocks. Notably, conventional
neural networks have arbitrarily large derivatives with respect to
the input features [23], thus invalidating the assumptions required
to guarantee convergence of fixed-point methods when simulat-
ing circuits with multiple one-port nonlinearities in the WD do-
main [15, 8, 17].

In this paper, we propose to recover the aforementioned con-
vergence guarantees by training models with bounded derivatives.
To this end, we adopt a recently-proposed class of models, named
Lipschitz-bounded neural networks, which limit the magnitude of
the neural model’s Lipschitz constant by imposing architectural
constraints [24, 25, 26]. In our experiments, we show that Lipschitz-
bounded models are able to faithfully represent their analogue coun-
terparts, while satisfying the given convergence bounds. In con-
trast, conventional machine learning techniques, like Sobolev train-
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ing [27], produce models that consistently fail to meet the suffi-
cient conditions for convergence.

Outlined below are our contributions:

• we are the first to model one-port nonlinear elements in
WDFs with Lipschitz-bounded neural networks;

• we formally prove the connection between convergence guar-
antees of fixed-point methods and Lipschitz constant of data-
driven blocks;

• we apply the SIM algorithm for the simulation of circuits
featuring multiple neural network-based nonlinear one-port
WD blocks preserving all theoretical guarantees on conver-
gence;

• we extend the SIM convergence acceleration policy to this
new data-driven scenario via a novel estimation technique
for the slopes of the tangents passing through the operating
points on the v-i curves of one-port nonlinearities.

The remainder of this manuscript is organized as follows. In
Section 2, we provide the theoretical background on WDFs. Sec-
tion 3 introduces the SIM algorithm. In Section 4, we show how
to model multiple one-port nonlinearities using Lipschitz-bounded
neural network-based WD blocks, and we extend the SIM algo-
rithm to efficiently accommodate these novel data-driven blocks.
In Section 5, we discuss an example of application of the proposed
approach. Section 6 concludes this manuscript.

2. BACKGROUND ON WAVE DIGITAL FILTERS

The design of WDFs relies on a port-wise description of a refer-
ence analog circuit. In this approach, each pair of Kirchhoff vari-
ables, i.e., port voltage v and port current i, is replaced with a pair
of voltage wave variables defined as [7]

a = v + Zi , b = v − Zi , (1)

where a and b are the incident wave and reflected wave, respec-
tively, whereasZ ̸= 0 is a free parameter known as port resistance.
The inverse mapping of (1) is expressed as

v =
a+ b

2
, i =

a− b

2Z
. (2)

2.1. Linear Elements

A broad class of linear one-port circuit elements, including resis-
tors, resistive voltage/current sources, and dynamic elements like
capacitors and inductors, when discretized using stable methods,
can be described through the discrete-time Thévenin equivalent
model [8]

v[k] = Rg[k]i[k] + Vg[k] , (3)

where k is the sampling index, v[k] is the port voltage, i[k] is the
port current, Rg[k] > 0 is a constant or time-varying resistive pa-
rameter, and Vg[k] is a constant or time-varying voltage parameter.
Using (2), the Thévenin equivalent model can be expressed in the
WD domain as follows

b[k] =
Rg[k]− Z[k]

Rg[k] + Z[k]
a[k] +

2Z[k]

Rg[k] + Z[k]
Vg[k] . (4)

The instantaneous dependence between b[k] and a[k] can be elim-
inated by setting Z[k] = Rg[k]; in this case, (4) reduces to b[k] =
Vg[k], and the linear one port-element is said to be adapted ac-
cording to WDF theory [7].

2.2. Connection Networks

In the Kirchhoff domain, a N -port connection network [9] is char-
acterized by a vector of port voltages v = [v1, . . . , vN ]T and a
vector of port currents j = [j1, . . . , jN ]T. Let vt ∈ Rq be the
vector of independent port voltages and jl ∈ Rr be the vector of
independent port currents, where q + r = N . Then, it is possible
to write

v = QTvt , j = BTjl , (5)
where Q is the q × N fundamental cut-set matrix and B is the
r × N fundamental loop matrix [9]. Moreover, the orthogonality
property BQT = 0 holds true.

The WD realization of connection networks is a N -port scat-
tering junction characterized by the wave variables

aJ = v + Zj , bJ = v − Zj , (6)

where aJ = [aJ1, . . . , aJN ]T is the vector of waves incident to the
junction, bJ = [bJ1, . . . , bJN ]T is the vector of waves reflected by
the junction, while Z = diag[Z1, . . . , ZN ] is a diagonal matrix
having port resistances as diagonal entries.

The scattering relation between aJ and bJ is given by bJ =
SaJ, where S is anN ×N scattering matrix that can be computed
using either of the two following equivalent equations [9]

S = 2QT(QZ−1QT)−1QZ−1 − I , (7)

S = I− 2ZBT(BZBT)−1B , (8)
with I being the N ×N identity matrix.

2.3. Nonlinear Elements

Let us consider a generic nonlinear one-port element character-
ized in the Kirchhoff domain by an implicit nonlinear constitutive
equation

h(v, i) = 0 . (9)
Substituting (2) into (9) results in a corresponding scattering rela-
tion in the WD domain which may not be expressible in explicit
form

b = f(a, Z) , (10)
where f is a nonlinear scalar function that depends both on the in-
cident wave a and on the free parameter Z. To simplify notation,
we omit explicit mention of the dependence on Z in the remainder
of the paper. In this case, the resulting implicit scattering equa-
tion can be implemented in different ways, e.g., using a CPWL
approximation [21], or a local one-dimensional NR solver [15].
Unlike most linear one-port elements, nonlinear elements cannot
be adapted [7]. Nevertheless, even if the elimination of the in-
stantaneous dependence of b on a is not possible, it can be “min-
imized” by dynamically adjusting the port resistance Z to align
with the slope of the tangent at the current operating point on the
v-i characteristic [15, 8].

As a relevant example of a nonlinear one-port element that we
will use in our experiments in Sec. 5, let us consider the extended
Schockley diode model discussed in [8], whose implicit constitu-
tive equation is

h(v, i) = Is

(
exp

(
v −Rsi

ηVt

)
− 1

)
+
v −Rsi

Rp
− i = 0 , (11)

where Is is the saturation current, η is the ideality factor, Vt is
the thermal voltage, while Rs and Rp are the series and shunt re-
sistances of the p-n junction. A possible WD realization of such
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a model is the explicit scattering relation based on the Wright ω
function discussed in [17].

3. SCATTERING ITERATIVE METHOD

The Scattering Iterative Method (SIM) [15] represents a WD iter-
ative method designed for simulating circuits with multiple non-
linearities which has been previously used for the emulation of
nonlinear audio circuits [8, 17].

Let us assume that the circuit is modeled in the WD domain
using a single multi-port scattering junction to which all the ele-
ments are connected. We denote a = [a1, . . . , aN ]T as the vector
of waves incident to the elements (reflected by the junction) and
b = [b1, . . . , bN ]T as the vector of waves reflected by the ele-
ments (incident to the junction). Consequently, the vector of port
voltages v is the same of Sec. 2.2, while the vector of port currents
i is defined as i = −j, yielding a = bJ and b = aJ.

At each sampling step k of the discrete-time simulation, SIM
iteratively performs the following four stages:

Initialization The free parameters Z1[k], . . . , ZN [k] are set as
close as possible to the tangent slope at the current work-
ing point on the v-i characteristic. For linear elements, this
can be achieved by employing the adaptation conditions of
traditional WDFs [7]. For nonlinear one-port elements, op-
timal slopes can be only estimated from the values of nth
port current and port voltage at the operating point of the
previous sample. Then, the updated Z[k] is used to update
S[k] using (7) or (8).

Local Scattering Stage The waves b(γ)n [k] reflected by adapted
linear elements are computed as b(γ)n [k] = Vgn[k]. When
they are reflected by nonlinear one-port elements instead,
they are determined as

b(γ)n [k] = fn(a
(γ−1)
n [k]) , (12)

where γ is the fixed-point index, and the generic nonlinear
function fn(·) is the WD mapping, e.g., (10), employed to
model the element connected at port n.

Global Scattering Stage At each SIM iteration γ, the vector of
waves incident to the elements a(γ)[k] is computed as

a(γ)[k] = S[k]b(γ)[k] . (13)

Convergence Check Local Scattering Stage and Global Scatter-
ing Stage are iterated until the convergence condition

∥v(γ)[k]− v(γ−1)[k]∥2 ≤ ϵSIM

is met, where v(γ)[k] = (a(γ)[k] +b(γ)[k])/2, while ϵSIM
is a small threshold, e.g., ϵSIM = 10−5.

3.1. Considerations on SIM Convergence

The SIM update formula at each fixed-point iteration can be ex-
pressed by combining (12) and (13) as

a(γ) = Sf
(
a(γ−1)

)
, (14)

where the sampling index k is omitted for readability and f(a) =

[f1(a1), . . . , fN (aN )]T is the vector of linear and nonlinear scat-
tering functions related to the one-port elements.

According to (14), as extensively discussed in [17], a suffi-
cient condition for SIM convergence is for the mapping Sf(a) to
be contractive. This condition can be reformulated in terms of the
spectral radius operator srad (·), i.e., the largest eigenvalue in ab-
solute value of the matrix in the argument, as

srad (SJf (a)) < 1 ∀a ∈ RN , (15)

where Jf (a) = diag[f ′
1(a1), . . . , f

′
N (aN )] is the Jacobian ma-

trix of f(a). If the circuit is characterized by a lossless reciprocal
connection network [17], it can be demonstrated that

srad (SJf (a)) ≤ srad (Jf (a)) , (16)

which reduces the convergence sufficient condition to

srad (Jf (a)) < 1 . (17)

In the literature, it has been shown that the condition in (17) holds
true assuming that all Zn parameters are positive and each cir-
cuit element is characterized by a monotonically increasing v-i
characteristic [15, 17]. Unfortunately, the same convergence con-
siderations cannot be readily applied to scenarios where one-port
nonlinearities are modeled by means of neural network-based WD
blocks.

4. MODELING MULTIPLE ONE-PORT
NONLINEARITIES USING NEURAL NETWORKS

The behavior of nonlinear electrical components can be character-
ized in a data-driven fashion based on measurement or simulation
data. Once the Kirchhoff v-i characteristic of the one-port element
has been acquired, it can be transformed into a WD domain dataset
using (1) and a comprehensive set of values for the port resistance
Z. Then, expressing the explicit WD scattering relation (10) for
a nonlinear one-port element can be recast into a regression prob-
lem:

b̂ = f̃ (a, ϱ(Z);θWD) . (18)

Here, f̃ denotes the function approximation provided by a suitable
neural network architecture [28, 29, 30] whose parameters θWD

are determined by solving the minimization problem

θ⋆
WD = arg min

θWD

L(b, b̂) , (19)

where L(b, b̂) is some regression loss function. As the port resis-
tance parameter Z generally spans several orders of magnitude,
the compression function ϱ is introduced to restrict its range of
variation [18]. Assuming that Z > 0, we choose ϱ(·) = ln(·).

4.1. Convergence Conditions and Lipschitzness

As explained in Sec. 3.1, the convergence of a fixed-point method
like SIM is guaranteed whenever (17) is satisfied. Here, we show
that an explicit bound on the Lipschitz constant of the approximat-
ing function f̃ is sufficient to satisfy said convergence condition.

Definition 1. A function g : Rd → Re is called Lipschitz contin-
uous in norm p if there exists a constant c such that

∀x,y ∈ Rd, ∥g(x)− g(y)∥p ≤ c∥x− y∥p . (20)

The smallest c for which (20) is true is called the Lipschitz constant
of g, in short Lipp(g) = c.
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Theorem 1. Assume g : Rd → R is an arbitrary function over
the reals such that its Lipschitz constant in p-norm is bounded by
Lipp(g) < 1. Then, each partial derivative of g is also bounded

by
∣∣∣ ∂g(x)∂xı

∣∣∣ < 1 for all x = [x1, . . . , xı, . . . , xd]
T.

Proof. Assume that c < 1 in Definition 1 as per the statement of
the theorem. Let y = x+ ϵı vary from x only along dimension ı.
Then, we have

||g(x)− g(x+ ϵı)||p
||ϵı||p

< 1 .

We can notice that both norms are taken over vectors of size one,
thus reducing them to the absolute value for any p:

|g(x)− g(x+ ϵı)|
|ϵı|

< 1 .

Finally, by taking the limit of the left-hand side for ϵı → 0, we
recover the definition of partial derivative, and thus

∣∣∣ ∂g(x)∂xı

∣∣∣ < 1.

As per our discussion around (10), our data-driven nonlinear
WD blocks are functions f̃ of the two variables a and Z. At the
same time, the convergence conditions in Sec. 3.1 can be satis-
fied as long as

∣∣∣ ∂f̃(a)∂a

∣∣∣ < 1. In this sense, having the condition

Lipp(f̃) < 1 is a stronger guarantee than needed, as it puts limits

on
∣∣∣ ∂f̃(a)∂Z

∣∣∣ too. However, the input variable Z can undergo any ar-
bitrary rescaling, as shown in (18). As such, to avoid unnecessary
constraints during training, it suffices to ensure that the scaled and
zero centered data ϱ(Z) have a slope much less than one.

4.2. Lipschitz-Bounded Neural Networks

Lipschitz-bounded neural networks are a class of models that aim
at solving the minimization problem (19), while satisfying a given
upper bound on the Lipschitz constant of f̃ . More formally, we
have

θ⋆
WD = arg min

θWD

L(b, b̂) s.t. Lipp(f̃) ≤ c .

While originally introduced to address the issue of adversarial ex-
amples in image classification models [31], Lipschitz-bounded neu-
ral networks have found applications in differential privacy [32],
stable control [33], and reinforcement learning [34]. Overall, they
work by constraining the Lipschitz constant of each neural layer
via careful architectural choices.

A standard fully-connected layer ℓ is defined as

z = σ(Wu+ β) , (21)

where σ is a proper activation function, while W and β consti-
tute a trainable weight matrix and bias vector, respectively. With
respect to (21), the majority of available Lipschitz-bounded ar-
chitectures focus on achieving Lip2(ℓ) ≤ 1 in Euclidean norm.
Note that the specific p-norm does not prevent our application
to WDF as per Theorem 1. Additionally, we can easily achieve
Lip2(ℓ) ≤ c by rescaling the output of ℓ by any arbitrary constant
c. Hereafter, we introduce the neural architecture we use in our
comparative experiments in Sec. 5:

Cayley-Orthogonal Layers (CAY) A possible reparametrization
of the standard fully-connected layer (21) relies on an or-
thogonal weight matrix D

z = σ(Du+ β) , (22)

for any activation with slope σ′(·) ∈ [−1, 1]. This can be
achieved through the Cayley Transform [24], which maps a
skew-symmetric weight matrix W into an orthogonal ma-
trix D using the relation

D = (I−W)(I+W)−1 .

Gradient-preserving activation functions like absolute value
and group sort are recommended [35].

Hence, we implement f̃ with an architecture composed of such
layers, ensuring that Lip2(ℓ) ≤ 1. Then, we rescale the neural

network output by c < 1, thus enforcing
∣∣∣ ∂f̃(a)∂a

∣∣∣ ≤ c < 1. This
condition is sufficient to satisfy the convergence criterion in (17).

4.3. Data-driven Port Resistance Update for SIM with Neural
Network-based WD blocks

Neural network-based WD blocks implementing (18) may not rely
on any prior knowledge of the Kirchhoff domain constitutive equa-
tion for the modeled component (e.g., the v-i characteristic has
been experimentally sampled). The lack of such information might
prevent the estimation of the optimal tangent slope during the SIM
Initialization Stage. However, neural network output derivatives
can be computed using automatic differentiation (AD) [36]. Specif-
ically, at each sampling step k, ∂f̃n(an)

∂an
can be calculated for the

nth neural network-based WD block.
To establish a relation between ∂f̃n(an)

∂an
and the optimal tan-

gent slope, let us rewrite (1) as [16, 17]

an = vn(in) + Znin = ϕn(in) ,

bn = vn(in)− Znin = ψn(in).
(23)

Assuming that ϕn(in) is invertible, the scattering relation of a
generic element (10) can be rewritten as

bn = fn(an) = ψn(ϕ
−1
n (an)) . (24)

The derivative of (24) with respect to an can be then obtained via

f ′
n(an) =

ψ′
n(ϕ

−1
n (an))

ϕ′
n(ϕ

−1
n (an))

=
v′n(in)− Zn

v′n(in) + Zn
, (25)

where v′n(in) is the derivative of vn(in) with respect to in, which
in turn corresponds to the tangent slope at the current working
point. Solving (25) for v′n(in) yields the formula

v′n(in) = −f
′
n(an) + 1

f ′
n(an)− 1

· Zn , (26)

which allows us to estimate the tangent slope as a coefficient de-
pendent on f ′

n(an) = ∂f̃n(an)
∂an

scaling the previously assigned
value of Zn. At the same time, (26) requires that |f ′

n(an)| < 1
to ensure positive values of Zn, aligning with the conditions dis-
cussed in Sec. 3.1.
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Table 1: Values of the parameters of the diode-based ring modulator circuit shown in Fig. 1.

Rin Rc Rd Rout Ca Cb Cd La Lb

80 Ω 1 Ω 50 Ω 600 Ω 1 nF 1 nF 1 nF 0.8 H 0.8 H

Figure 1: Dynamic diode-based ring modulator.

5. EXAMPLE OF APPLICATION

As a possible case study, let us consider the dynamic diode-based
ring modulator circuit in Fig. 1. This circuit is characterized by
two ideal 3-winding transformers, whose turn ratios are ϑ/µ =
ν/µ = ξ/λ = τ/λ = 1/2, where ϑ, ν, µ, ξ, τ and λ are the num-
bers of turns in each winding. The nonlinear diodes are four iden-
tical 1N914 diodes, whose extended Schockley model parameters,
discussed in Sec. 2.3, are Is = 2.52 nA, η = 1.752, Vt = 26 mV,
Rs = 0.568 Ω, andRp = 105 Ω. The parameters and correspond-
ing values of the linear one-port elements are listed in Table 1.

The WD realization of the circuit in Fig. 1 is shown in Fig. 2.
The WD structure is characterized by 13 one-port elements and by
a 13-port junction R1 embedding the two ideal 3-winding trans-
formers [8, 16]. The choice of a target circuit featuring diodes is
motivated by the existence of efficient WD models of such nonlin-
earities in the literature on WDFs [8, 17]. This facilitates a rigorous
evaluation of the performance of the proposed method.

Figure 2: WD implementation of the circuit shown in Fig.1.

5.1. Dataset and Model Training

For our experiments, we generate a Kirchhoff domain dataset of
the 1N914 diode from a Mathworks Simscape extended Schock-
ley diode model implementation and the previously reported set
of parameters. We sample the nonlinear diode model by linearly
increasing the voltage v from −3V to 1V over the duration of 1
second and acquire the corresponding current i at a sampling rate

fs = 96 kHz. The obtained v-i characteristic can be converted
into corresponding WD variables using (1) and 150 values of Z in
the range [1, 105] Ω. To ensure adequate sampling of the Z, we
split the range of interest into two sub-ranges. We linearly sam-
ple 50 values of Z from [1, 103] Ω, and the remaining 100 values
from (103, 105] Ω. The compressed values ϱ(Z) = ln(Z) are then
computed and zero centered. Out of the entire dataset, 80% is used
for training, while the remaining 20% is set aside for evaluation
purposes. Finally, batches containing 256 tuples

(
[a, ln(Z)]T, b

)
are assembled for training purposes.

In our study, we compare the performance of the CAY neural
network, built using Lipschitz-bounded layers as defined in (22),
with that of a Multilayer Perceptron (MLP) utilizing standard fully
connected layers described in (21). Both architectures comprise 2
layers with 32 hidden units each: the CAY neural network em-
ploys an absolute value activation function, while the MLP uses
the ReLU activation function. The CAY model has an imposed up-
per bound on its Lipschitz constant of c = 0.99975. These models
are implemented in Python using Pytorch [37] and are trained for
200 epochs using Adam [38] with a learning rate of 10−3 and the
other default hyperparameters to minimize the Normalized Mean

Squared Error (NMSE) loss function L(b, b̂) :=
∑

j(bj−b̂j)
2∑

j b2j
.

The reparametrization of the CAY layer induces a strong reg-
ularization effect on the neural network, leading to difficulties in
fitting the provided training dataset [31]. As evidence, the NMSE
computed over the model predictions on the evaluation set is 1.26×
10−3 for the CAY model and 9.89 × 10−7 for the MLP. How-
ever, let us compare the predictions of both models against the
explicit WD extended Schockley diode model realization based on
the Wright ω function [17], for a ∈ [−2.5, 1] V and Z = 102 Ω,
in Fig 3(a) and Fig 4(a), respectively. Although both implemen-
tations provide a satisfactory approximation of the WD nonlinear
diode characteristic, it is noteworthy that the first-order derivative
computed with AD of the MLP neural network in Fig 4(b) can lo-
cally exceed the value of one, unlike that of the Lipschitz-bounded
CAY neural network in Fig 3(b).

This issue can be also inspected globally by sampling the value
of the derivative across the whole input space [39]. To do so,
we extract random inputs with a ∈ [−2.5,+2.5] V and Z ∈
[1, 105] Ω and add a random perturbation with norm ||ϵ||2 = 10−2

to them. The maximum Lipschitz constant across more than 1 bil-
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(a)

(b)

Figure 3: Validation of the CAY-based 1N914 diode WD model:
(a) CAY predictions (orange) vs. the ground truth (blue). (b) First-
order derivatives computed with AD (orange) vs. the ground truth
(blue).

lion samples is 0.999747 for the CAY model and 1.288187 for the
MLP model. Note that the former is very close to the upper bound
of c = 0.99975 imposed during training.

5.2. Results

In this subsection, we discuss the numerical results derived from
the SIM-based simulation of the nonlinear WD structure of Fig 2,
where the nonlinear one-port WD blocks are implemented either
using the Lipschitz-bounded CAY neural network or the MLP one.

The circuit is tested with input signal Vin = sin(2πkfin/fs)
and carrier signal Vc = sin(2πkfc/fs), where k is the sampling
index, fs = 96 kHz is the sampling frequency, while fin =
1.5 kHz and fc = 500 Hz are the fundamental frequencies of
the input and of the carrier, respectively. All the simulation al-
gorithms of the WD structures are also implemented as Python
scripts using Pytorch and its Autograd engine [37], and are run on
a laptop-mounted Intel Core i5-1240P 1.70 GHz CPU.

Simulation results related to five periods of the input signal are
reported in Fig. 5(a) and Fig. 5(b), respectively. As it is possible
to appreciate, both the neural network-based models closely match
the Simscape simulation, with a deviation expressed in NMSE be-
tween the two output voltages of 1.12 × 10−4 for the CAY-based
model and 1.43× 10−4 for the MLP-based model.

As discussed in Sec. 4.3, at each sampling step k, the port re-
sistances of the four nonlinear diodes Zn, where n ∈ [1, 4], are
set equal to the data-driven estimate of v′n(in). A comparison be-
tween the proposed method and a standard analytic estimate rely-
ing on the constitutive equation of the extended Schockley diode
model is shown in Fig. 6. For both neural network-based mod-
els, the estimated tangent slope at the current working point of the
diodes mostly aligns with the analytic estimation. The appearing
oscillations and drifts can be attributed to the piecewise linear ac-

(a)

(b)

Figure 4: Validation of the MLP-based 1N914 diode WD model:
(a) MLP predictions (orange) vs. the ground truth (blue). (b) First-
order derivatives computed with AD (orange) vs. the ground truth
(blue).

tivation functions employed, which result in a piecewise constant
∂f̃n(an)

∂an
. We emphasize that in the absence of an explicit bound,

the derivative of the MLP-based model might exceed one. This
could lead to invalid estimates of (26), resulting in negative slope
values and consequently disrupting the simulation.

Finally, we conduct a quantitative analysis to assess the simu-
lation speedup introduced by dynamically updating Zn using (26),
focusing just on the CAY-based model. We run 100 simulations
over 12 ms of input signal keeping the diode port resistances fixed
at the same value of 50 Ω and other 100 dynamically updating
them. It is worth noting that, in the simulations in which Zn is
kept fixed, the Pytorch gradient calculation in each forward pass
is deactivated [37]. Table 2 compares the average execution time
of these simulations. Despite the increased computational load of
computing the neural network gradients at each sampling step, our
proposed method ensures SIM convergence on average in 7 itera-
tions per sample, compared to the 37 without port resistance up-
date. This in turn results in an overall simulation speedup of 1.92.

Table 2: Comparison between the average execution time of SIM
with and without the Zn data-driven update.

Avg. Exec. Time Speedup

SIM + Fixed Port Resistances 13.61 s 1
SIM + Proposed Approach 7.08 s 1.92

6. CONCLUSIONS

In this paper, we have framed the problem of modeling circuits
with multiple one-port nonlinearities in the WD domain into a new
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Figure 5: Voltage Vout measured across the resistor Rout. (a) Comparison between the CAY-based WD implementation and Mathworks
Simscape. (b) Comparison between the MLP-based WD implementation and Mathworks Simscape.
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Figure 6: Estimated v′n(in[k]) used to update the port resistance Z1,2,3,4[k] of the four diodes at each sample k: (a) CAY data-driven
estimation (orange) vs. analytical estimation (blue). (b) MLP data-driven estimation (orange) vs. analytical estimation (blue)

data-driven perspective. In particular, we have shown how the use
of Lipschitz-bounded neural networks for modeling one-port non-
linearities in the WD domain allows us to recover all the theoret-
ical guarantees on SIM convergence, along with its convergence
acceleration policy.

Future work could involve applying this methodology to model
multiple one-port nonlinearities with memory. Another notewor-
thy extension would involve modeling multiple multi-port elements
in a fully data-driven fashion and suitably generalizing SIM.
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