
Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

DDSP-BASED NEURAL WAVEFORM SYNTHESIS OF POLYPHONIC GUITAR
PERFORMANCE FROM STRING-WISE MIDI INPUT

Nicolas Jonason

KTH Royal Institute of Technology
Stockholm, Sweden
njona@kth.se

Xin Wang

National Institute of Informatics
Tokyo, Japan

wangxin@nii.ac.jp

Erica Cooper

National Institute of Informatics
Tokyo, Japan

ecooper@nii.ac.jp

Lauri Juvela

Aalto University
Espoo, Finland

lauri.juvela@aalto.fi

Bob L. T. Sturm

KTH Royal Institute of Technology
Stockholm, Sweden
njona@kth.se

Junichi Yamagishi

National Institute of Informatics
Tokyo, Japan

jyamagis@nii.ac.jp

ABSTRACT

We explore the use of neural synthesis for acoustic guitar from
string-wise MIDI input. We propose four different systems and
compare them with both objective metrics and subjective evalua-
tion against natural audio and a sample-based baseline. We iter-
atively develop these four systems by making various considera-
tions on the architecture and intermediate tasks, such as predicting
pitch and loudness control features. We find that formulating the
control feature prediction task as a classification task rather than
a regression task yields better results. Furthermore, we find that
our simplest proposed system, which directly predicts synthesis
parameters from MIDI input performs the best out of the four pro-
posed systems. Audio examples and code are available.

1. INTRODUCTION

The synthesis of expressive and realistic guitar performance has
been attempted in several ways. One is sample-based synthesis
[1], which requires a database of purpose-made sample recordings.
Another way is physical modeling synthesis [2], which requires
solving systems of partial differential equations modeling the en-
tire guitar. This paper considers a third approach: neural synthesis,
a data-driven approach that does not require a purpose-made sam-
ple library or the specification of the physics of the instrument.

One family of neural synthesis techniques, termed Differen-
tiable Digital Signal Processing (DDSP) [3], involves integrating
digital signal processors into neural networks. One particular DDSP
configuration combines harmonic oscillators, noise filtering and a
trainable reverb [3]. This has been used to model instruments such
as violin (monophonic) [3], various wind instruments [4, 5] and
piano [6] with high quality from small amounts of training data.

While Engel et al. [3] originally controlled the networks with
pitch and loudness, later work extended these models to other forms
of input such as higher level expression features [5] and MIDI in-
put [6, 5, 7, 8]. Other work has shown that one can train poly-
phonic DDSP models, where voices are rendered in parallel and

Copyright: © 2024 Nicolas Jonason et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

then summed, by optimizing a spectral loss between the ground
truth polyphonic audio and a mixture of synthesized voices [6, 9].

Guitar poses several challenges from a neural synthesis per-
spective. First, it is a polyphonic instrument, meaning that multiple
voices can be active at the same time each with varying pitch. Gui-
tar performance involves idiosyncrasies such as bending strings,
sliding, and other articulations. In the case of bends, pitch is not
discrete; and in the case of playing legato, pitch can vary within a
single string excitation. Furthermore, the type, angle and location
of the excitation of a string each affects the resulting sound. Un-
like piano performance, where detailed transcriptions can be digi-
tally captured (e.g., by a Disklavier [10]), obtaining objective and
detailed ground truth transcription for guitar performances is dif-
ficult. For example, strummed chords often include muted strings
that are sometimes omitted from the transcription [11].

Our work adapts and develops previous work in neural syn-
thesis [3, 8] to the synthesis of acoustic guitar performance using
GuitarSet [11] a dataset of hexaphonic acoustic guitar recordings
with accompanying transcriptions. While some earlier work has
explored neural synthesis of single guitar notes [12, 13, 14], our
work is among the first to use neural networks to generate per-
formances of guitar from string-wise MIDI input, i.e MIDI input
containing one channel of MIDI data per string. Recent work by
Wiggins et al. [15] on this topic is discussed in section 5. We
train four different neural synthesizers on hexaphonic and micro-
phone recordings of acoustic guitar performances from string-wise
MIDI input, and compare them with objective metrics and subjec-
tive evaluation against natural audio and a sample-based baseline.
The starting point of our study is a two-stage control-synthesis ar-
chitecture that generates audio by first predicting control features
and then using a synthesis model to generate audio from the pre-
dicted control features. Our first finding is that we obtain better
results from treating control feature prediction as a classification
task rather than as a regression task. We then use joint training
of control and synthesis sub-models, which further improves per-
formance. Finally, we present a unified architecture that merges
control and synthesis sub-modules and simplifies training. Audio
examples1 and code2 are available.

1https://erl-j.github.io/neural-guitar-web-supplement/
2https://github.com/erl-j/ddsp-guitar

DAFx.1

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

208

https://kth.se
mailto:njona@kth.se
mailto:wangxin@nii.ac.jp
mailto:ecooper@nii.ac.jp
https://iptc.upm.es/
mailto:lauri.juvela@aalto.fi
https://kth.se
mailto:njona@kth.se
mailto:jyamagis@nii.ac.jp
http://creativecommons.org/licenses/by/4.0/
https://erl-j.github.io/neural-guitar-web-supplement/
https://github.com/erl-j/ddsp-guitar

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

2. PROPOSED SYSTEMS

We now introduce our four proposed systems, shown in Figure
1, starting with our default configuration and then its subsequent
modifications.

2.1. Default configuration

Our default configuration (ctr-syn-rg) uses a control-synthesis
architecture [8]. This architecture synthesises audio from MIDI in
two stages. First, the control model takes MIDI input and predicts
control features. Then, a synthesis model takes the control features
and outputs an audio waveform. The control model C is written as

f̂0, l̂, p̂, ĉ = C(Xpitch, Xvel, s) (1)

It takes string-wise MIDI input represented with:

• one-hot quantized pitch Xpitch ∈ {0, 1}(nstrings,nframes,npitch bins)

• one-hot quantized velocity Xvel ∈ {0, 1}(nstrings,nframes,nvel bins)

• a vector of one-hot encoded string indices s ∈ {0, 1}(nstrings,nstrings)

Its output consists of predictions of four control features for each
string: fundamental frequency (F0) f̂0, loudness l̂, periodicity p̂,
and spectral centroid ĉ where f̂0, l̂, p̂, ĉ ∈ R(nstrings,nframes). We set
npitch bins = 305, nvel bins = 64, and nstrings = 6, whereas nframes

depends on the feature frame rate and render duration. The moti-
vation for predicting the fundamental frequency, rather than solely
relying on the MIDI pitch given by the score, is to attempt to model
subtle changes in string pitch which are not explicit in the score
such as those on muted strings and between string excitations. We
include periodicity in order to help the synthesis model distinguish
between tonal and non-tonal sections [4] and spectral centroid to
provide timbral information to the synthesis model [16]. Section
3.1 details how control features are extracted from the hexaphonic
audio.

The synthesis model consists of two parts, a synthesis decoder
and a harmonic+noise+reverb synthesizer. The synthesis decoder
D, is written:

H, a,N = D(f̂0, l̂, p̂, ĉ, s) (2)

The synthesis decoder takes the string-wise predicted control fea-
tures from C and outputs three synthesis parameters;

• harmonic amplitudes H ∈ R(nstrings,nframes,nharmonics)

• global harmonic amplitude a ∈ R(nstrings,nframes)

• filtered noise band amplitudes N ∈ R(nstrings,nframes,nnoise bands)

These synthesis parameters are then fed to a 6-voice harmonic +
noise + reverb synthesizer H, the outputs of which are summed to
predict the final waveform y ∈ R(nsamples).

Figure 2 details the control-synthesis architecture. The con-
trol model C consists of a neural network combining bi-directional
long short-term memory (LSTM) [17] operating across the time di-
mension and scaled dot-product self-attention [18] operating across
the string dimension to account for inter-string dependencies. The
use of bi-directionality is motivated by the fact that certain aspects
of a guitar performance requires looking at future notes. For exam-
ple, in order to render the sound of fingers sliding across the strings
before a chord change, we need to know that a chord change is
coming up. The synthesis decoder D uses a bi-directional LSTM-
based neural network [3]. The harmonic + noise synthesizer uses
128 harmonics and 128 noise filter bands, with the same design

as in [3]. While acoustic guitar does exhibit inharmonicity due to
string stiffness, the inharmonicity is difficult for the average lis-
tener to perceive [19], and we leave the inclusion of inharmonic-
ity to future work. We use one trainable reverb per string to ac-
count for differences in the position of each string in relation to
the guitar body and the microphone. Each reverb has a 0.25-
second trainable impulse response. With the exception of the self-
attention across strings, all network layers process the strings inde-
pendently. The control model and synthesis decoder use a hidden-
layer size of 512. The control model, synthesis decoder and train-
able reverb have 53.7M, 18.2M, and 72k parameters respectively,
totalling 72M parameters.

In the default configuration, we train the control and synthesis
models separately. First, we train the synthesis model to minimize
the multi-scale spectral loss [20, 3] (MSSL) between natural mi-
crophone audio y and audio synthesized from ground truth control
features y′:

Lsyn = MSSL(y, y′) (3)

Secondly, we train the control model to predict control features
from MIDI input. In line with earlier work [4, 5, 7, 8], the default
configuration treats the prediction of control features as a regres-
sion task. The loss, notated Lrg, is based on the mean squared error
(MSE) of the predicted control features:

Lrg = Lf0 + Ll + Lp + Lc (4)

Lf0 =

nstrings∑
i=1

T∑
t=1

(f0(i, t)− f̂0(i, t))
2 · l(i, t) · p(i, t) (5)

Ll =

nstrings∑
i=1

T∑
t=1

(l(i, t)− l̂(i, t))2 (6)

Lp =

nstrings∑
i=1

T∑
t=1

(p(i, t)− p̂(i, t))2 · l(i, t) (7)

Lc =

nstrings∑
i=1

T∑
t=1

(c(i, t)− ĉ(i, t))2 · l(i, t) (8)

For string i ∈ [1, nstrings] and feature frame t ∈ [1, T] the tar-
get loudness l is used to weight the MSE for f0, p, c according
to signal strength thus discounting prediction errors in quieter sec-
tions. We also discount the F0 loss in non-pitched sections, by
weighting the f0 MSE by target periodicity.

2.2. Control feature prediction as a classification task

After initial experiments with the default configuration produced
poor results, we experimented with treating control feature predic-
tion as a classification task rather than a regression task since this
has been shown to yield better performance in other contexts [21].
We refer to this system as ctr-syn-cl.

We quantize and one-hot encode the four control features with
nf0 bins = 305, and K = 64 bins for l, p, c. We denote the
new, one-hot encoded features as F0 ∈ {0, 1}(nstrings,nframes,nf0 bins),
L,P,C ∈ {0, 1}(nstrings,nframes,K). The new control model is writ-
ten:

F̂0, P̂ , Ĉ, L̂ = Ccl(Xpitch, Xvel, s) (9)

It outputs probabilities for each control feature over its quantiza-
tion bins. Control features are then generated by argmax sampling
over the estimated quantization bin probabilities. For training, we

DAFx.2

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

209

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

H
&
N

Sy
nt

hs

H
&
N

Sy
nt

hs

H
&
N

Sy
nt

hs

Sy
nt

he
si
sl

de
co

de
r

Sy
nt

he
si
sl

de
co

de
r

Sy
nt

he
si
sl

de
co

de
r

C
on

tr
ol

m
od

el
C
on

tr
ol

m
od

el
C
on

tr
ol

m
od

el

s

s

s

R
ev

er
bs

R
ev

er
bs

R
ev

er
bs Waveform

Waveform

Waveform

Waveform

Loudness

Loudness

Loudness

Harm. amps

Harm. amps

Harm. amps

Global amp

Global amp

Global amp

Noise mags

Noise mags

Noise mags

F0

F0

F0

MIDI
pitch

MIDI
pitch

MIDI
pitch

MIDI
vel.

MIDI
vel.

MIDI
vel.

Periodicity

Periodicity

Periodicity

Centroid

Centroid

Centroid

H
&
N

Sy
nt

hs

U
ni
fie

d
m

od
el

s

R
ev

er
bs

Harm. amps
Global amp

Noise mags

F0

MIDI
pitch

MIDI
pitch

MIDI
vel.

MIDI
vel.

Spectral loss

Spectral loss

Classification loss

Spectral loss

Spectral loss

Spectral loss

H
&
N

Sy
nt

hs

H
&
N

Sy
nt

hs

Sy
nt

he
si
sl

de
co

de
r

Sy
nt

he
si
sl

de
co

de
r

R
ev

er
bs

R
ev

er
bs

Waveform

Waveform

H
&
N

Sy
nt

hs

Loudness

Loudness

Harm. amps

Harm. amps

Global amp

Global amp

Noise mags

Noise mags

Periodicity

Periodicity

Centroid

Centroid

Sy
nt

he
si
sl

de
co

de
r

R
ev

er
bs Waveform

Waveform

Waveform

Loudness Harm. amps
Global amp
Noise mags

F0

F0

F0

Periodicity
Centroid

H
&
N

Sy
nt

hs

U
ni
fie

d
m

od
el

s

s

s

R
ev

er
bs

Harm. amps

Synthesis model training

Synthesis model training

Global amp

Noise mags

F0

H
&
N

Sy
nt

hs

Sy
nt

he
si
sl

de
co

de
r

C
on

tr
ol

m
od

el

s s

R
ev

er
bs

Loudness Harm. amps
Global amp
Noise mags

F0

MIDI
pitch
MIDI
vel.

Periodicity
Centroid

Classification loss

s

s

s

s

ct
r-

sy
n-

rg

Synthesis model pre-training

Joint training

ct
r-

sy
n-

cl
ct

r-
sy

n-
jt

un
if

ie
d

TestTraining

+

+

+

C
on

tr
ol

m
od

el

s
Loudness

F0

MIDI*
pitch
MIDI
vel.

Periodicity
Centroid

Regression loss

Control model training

C
on

tr
ol

m
od

el

s
Loudness

F0

MIDI
pitch
MIDI
vel.

Periodicity
Centroid

Classification loss

Control model training

*Ground truth values are indicated in bold.

Figure 1: Overview of the four proposed systems. ctr-syn-rg is a control-synthesis model with control feature regression where the
control and synthesis models are trained separately. ctr-syn-cl is a control-synthesis model with control feature classification where
the control and synthesis are trained separately. ctr-syn-jt trains a control feature classifier jointly with a pre-trained synthesis model.
unified merges the control model and synthesis decoder into a single network.

DAFx.3

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

210

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

 S
el
f-
at

te
nt

io
n

ac
ro

ss
 s
tr
in

gs

LS
T
M

LS
T
M

Li
ne

ar
 +

 a
ct

iv
at

io
ns

Li
ne

ar
 +

 a
ct

iv
at

io
ns

Li
ne

ar
,
la
ye

r-
no

rm
,
Le

R
EL

U

Li
ne

ar
,
la
ye

r-
no

rm
,
Le

R
EL

U

H&N synth
H&N synth
H&N synth
H&N synth
H&N synth

H&N synth

Reverb 1
Reverb 2
Reverb 3

A
ud

io

Reverb 4
Reverb 5

Reverb 6

Synthesis decoder
Synthesis model

+ +++ + ++

x3x3
x3

x3 x3

MIDI

pitch
MIDI

velocity

String
indices

Vel
Emb.

Loudness

Periodicity

Centroid

F0

String
Emb.’String

Emb.
String

indices

Pitch

Emb.

Harmonic+noise+reverb synth

F0

Global
harm.

amp.
Noise
band
mags.

Harm.
amps.

Control model

Figure 2: Details of the control-synthesis architecture

define the feature classification loss Lcl on weighted negative log
probabilities.

Lcl = LF0 + LL + LP + LC (10)

LF0 = −
nstrings∑
i=1

T∑
t=1

nf0 bins∑
b=1

F0(i, t, b) log(F̂0(i, t, b)) · l(i, t) · p(i, t)

(11)

LL = −
nstrings∑
i=1

T∑
t=1

K∑
b=1

L(i, t, b) log(L̂(i, t, b)) (12)

LP = −
nstrings∑
i=1

T∑
t=1

K∑
b=1

P (i, t, b) log(P̂ (i, t, b)) · l(i, t) (13)

LC = −
nstrings∑
i=1

T∑
t=1

K∑
b=1

C(i, t, b) log(Ĉ(i, t, b)) · l(i, t). (14)

ctr-syn-cl has 72.3M parameters with 54M belonging to Ccl.

2.3. Joint training of control and synthesis sub-modules

Past work has shown that joint training of sub-modules can lead to
better performance for neural waveform synthesis of piano sounds
[22]. We therefore propose a system where the control model is
jointly trained together with a pre-trained synthesis model. We
refer to this system as ctr-syn-jt. The new control model is
written:

F̂0, l̂, p̂, ĉ = Cjt(Xpitch, Xvel, s) (15)

During joint training, we generate a predicted F0 contour f̂0
by argmax sampling of F̂0, which is passed to the synthesis model
to generate a waveform ŷ. The loss used during the joint training
is:

Ljt = LF0 + MSSL(y, ŷ) (16)

where y is the natural microphone audio and ŷ is the audio wave-
form synthesized from predicted control features. The loss Ljt

does not apply direct supervision to the predictions of p, l and c to
give the model flexibility in terms of the information passed from
the control model. However, we keep supervision of F0 since it
has been shown to be difficult to tune the frequency of an oscilla-
tor with gradient descent using a point-wise spectral loss [23, 24].
ctr-syn-jt has 72.2M parameters in total with 53.9M belong-
ing to Cjt.

2.4. Unified model

Following promising results from initial experiments with joint
training of control and synthesis model, we simplify our approach

LS
T

M
LS

T
M

LS
T

M

H&N synth
H&N synth
H&N synth
H&N synth
H&N synth
H&N synth

Reverb 1
Reverb 2
Reverb 3

A
ud

io

Reverb 4
Reverb 5
Reverb 6

Harmonic+noise+reverb synthUnified model

+ ++ ++

x5x3

 S
el

f-
at

te
nt

io
n

ac
ro

ss
 s

tr
in

gs

Li
ne

ar
 +

 a
ct

iv
at

io
ns

Pitch

Emb.

MIDI

pitch

MIDI

velocity

Vel
Emb.

String
Emb.

String

indices

F0

Global
harm.

amp.
Noise
band
mags.

Harm.
amps.

Figure 3: Details of the unified model architecture.

by merging the control model and synthesis decoder into a sin-
gle network U that predicts synthesis parameters directly from the
MIDI input and is shown in Figure 3. We refer to this system as
unified. We write U as:

F̂0, H, a,N = U(Xpitch, Xvel, s) (17)

.
The unified model is trained jointly with the trainable reverb

to minimize the sum of the multi-scale spectral loss and the F0
classification loss:

Lu = LF0 + MSSL(y, ŷ) (18)

unified has 89.8M parameters with 89.7M belonging U .

3. EXPERIMENTS

3.1. Experimental conditions

Dataset: We use the GuitarSet dataset [11], which contains au-
dio and pitch annotations for 360 acoustic guitar performances, to-
talling just over 3 hours. GuitarSet encompasses six different gui-
tar players each playing solo and accompaniment for three chord
progressions in five different styles in two different tempos in ran-
dom keys. The performances are recorded with both a micro-
phone as well as a hexaphonic pickup. A hexaphonic pickup is
a guitar pickup that produces one audio channel for each guitar
string. It is important to note, however, that the correspondence
between channels and strings is imperfect as the pickups also cap-
ture some signal from neighbouring strings. This phenomenon is
called bleed. To reduce bleed, the GuitarSet authors provide hexa-
phonic recordings processed with the KAMIR [25] bleed removal
algorithm. MIDI pitch annotation, extracted semi-automatically
from the hexaphonic recordings, is included in GuitarSet. Impor-
tantly, the pitches of the MIDI pitch annotation are not quantized
to semitones. Since velocity annotation is not included in Gui-
tarSet, we use the peak unit scaled dB(A) loudness of every note
as a proxy for MIDI velocity [8].

DAFx.4

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

211

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

We split the dataset such that no recordings from the same
performer-progression-style triple occur in both partitions. Split-
ting it randomly instead risks having recordings of a specific per-
former playing the same progression in the same style appearing
in both test and development splits. To limit author influence on
which recordings end up in each split, we assign random aliases
to each player, progression and style prior to splitting. Using the
aliases, we select 36 recordings for testing while balancing for di-
versity of players, progressions and styles. We use the remaining
324 recordings for model development, from which we randomly
choose 306 for training, and keep the remaining 18 recordings for
validation.

Feature extraction: Ground truth values for the control features
are extracted from KAMIR-processed hexaphonic recordings [11].
We compute F0 and periodicity using a PyTorch implementation
of CREPE [26, 27] and scale F0 with MIDI spacing [3] to [0, 1)
where 0 corresponds to (35Hz) and 1 is (1200Hz). We measure
loudness with A-weighting using librosa [28] and scale it to [0, 1)
where 0 is −80 dB and 1 is 0 dB [3]. Finally, we compute spectral
centroid with librosa and divide it by the Nyquist frequency.

Model training and inference: All training uses the ADAM opti-
mizer [29], a learning rate decay of 0.99 and early stopping with a
patience of 5 epochs. We train one synthesis model that is shared
by ctr-syn-rg, ctr-syn-cl and ctr-syn-jt, using a learn-
ing rate of 3 × 10−4. Control models for ctr-syn-rg and
ctr-syn-cl are trained using a learning rate of 1× 10−4. Joint
training of control and synthesis model in ctr-syn-jt uses a
learning rate of 1× 10−4. The unified system’s training uses a
learning rate of 1×10−4. Training excerpts are 8 seconds in dura-
tion, extracted from recordings at random time offsets. Both input
features and control features have a feature frame rate of 128 Hz.
Audio is generated at 48 kHz. Computing the MSSL uses window
sizes [192, 384, 768, 1526, 3072, 6144, 12288]. In order to ren-
der full recordings from the test set, we window the conditioning
into 8-second windows with a 4-second skip length and mix the
resulting windowed audio with 100 ms linear crossfade starting 2
seconds into the preceding window.

3.2. Evaluation

We now perform objective and subjective evaluation of the pro-
posed systems. We also include audio produced from the pre-
trained synthesis model that is used by ctr-syn-rg, ctr-syn-cl
and ctr-syn-jt given ground truth control features, denoted as
oracle-syn. The oracle-syn baseline system is included
to test the performance of the synthesis model in isolation and
assumes access to the ground truth control features which is not
the case in the MIDI-to-audio use-case. The subjective evaluation
also includes natural audio as well as renders of the MIDI with the
free commercial sample-based guitar synthesizer Ample Guitar lite
[30].

Objective evaluation: While rendering the test samples, we com-
pute the MSSL between natural and synthesized audio for each
8-second window. The average MSSL across all 8-second clips
for all recordings is shown in Table 1. To evaluate pitch accuracy,
we follow a series of steps. We first extract F0 estimates for each
string from the synthesized string channels using CREPE, and then
quantize them into semitones. Subsequently, we filter out frames
in which there are no active input MIDI notes on the correspond-
ing string. Finally, we compare these semitone estimates to two

Figure 4: Fourth string predicted F0 from ctr-syn-rg and
ctr-syn-cl against the target F0 (CREPE) and input MIDI
pitch. Also shown is MIDI input from strings 3 and 5. In the first
half-second we see the target F0 erroneously jump to the pitch of
the 3rd string. We also see high inaccuracy in the regression-based
F0 prediction with respect to both target F0 and MIDI input pitch.

Table 1: Objective and subjective evaluation results.

system MSSL ↓ CREPE acc.↑ MIDI acc.↑ MOS↑
natural - - - 4.10
ample-gtr - - - 4.08
oracle-syn 6.21 0.94 0.94 3.08
ctr-syn-rg 10.51 0.33 0.34 1.18
ctr-syn-cl 8.02 0.89 0.96 2.64
ctr-syn-jt 7.64 0.89 0.97 3.00
unified 7.71 0.90 0.97 3.38

reference sources: the string-wise semitone-quantized F0 values
estimated by CREPE from the natural hexaphonic audio and the
string-wise semitone-quantized input MIDI pitch data. The result-
ing average accuracies, denoted CREPE acc. and MIDI acc.
are shown in Table 1.

Subjective evaluation: We conducted an online listening test.
Since the durations of the full recordings (18 to 44 seconds) are
considerably longer than what is typically presented in a listen-
ing test, we segment all audio into halves and quarters, giving
us 216 segments with durations ranging from 4 to 22 seconds.
We recruited 66 unique listeners who self-reported having expe-
rience playing guitar. Each listener rated either one or two sets of
108 samples, totalling 70 sets, balanced to have approximately the
same number of samples for each system. The listeners were asked
to rate the samples on a 5-point scale (very bad, bad, acceptable,
good, very good), taking into account sound quality, naturalness
and appropriateness of pitch. We perform a statistical analysis of
the system scores using a two-sided Mann-Whitney U test [31]
with Bonferroni correction with α = 0.05. The last column of
Table 1 shows the mean opinion scores (MOS) of the systems.
According to the two-sided Mann-Whitney U test with Bonferroni
correction, there are statistically significant differences in the MOS
ratings among all pairs of systems, except for two pairs: natural
and ample-gtr, as well as oracle-syn and ctr-syn-jt.
We find that ctr-syn-rg performs the worst of all systems with
an overall MOS of 1.18. The next best is ctr-syn-rg with an
overall MOS of 2.64. After that ctr-syn-jt obtains a MOS of
3.00. Finally, unified performs the best out of all four proposed
systems with a MOS of 3.38, even outperforming oracle-syn.
This is lower than both ample-gtr and natural, which obtain
a MOS of 4.08 and 4.10.

DAFx.5

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

212

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

4. DISCUSSION

Out of the proposed systems, we find that ctr-syn-rg shows
the worst spectral loss whereas the best spectral losses are ob-
tained by ctr-syn-jt and unified. However, the MSSL for
oracle-syn is much better than that of our best proposed sys-
tems.

In the terms of pitch accuracy, we observe that ctr-syn-rg,
which predicts F0 with regression, performs poorly in semitone
pitch accuracy while systems that predict F0 with classification
(ctr-syn-rg, ctr-syn-cl,unified) obtains far higher semi-
tone pitch accuracies. Based on visual inspection of F0 predic-
tions, shown in Figure 4, we hypothesize that the failure of regres-
sion to accurately predict F0 originates from errors in the target F0
contours caused by bleed from neighbouring strings. In attempt-
ing to minimize the MSE to the flawed target, the regression model
places its prediction between the pitch of the target string and the
active pitches from neighbouring strings. We also observe that the
classification-based F0 predictions are closer in semitone accuracy
to the MIDI pitch input than they are to the CREPE contour, which
they are trained to predict. We also observe that oracle-syn
obtains less than 1.0 in terms of pitch accuracy with respect to the
CREPE F0 contour it receives as input. Explanations for this could
include variablity in the CREPE predictions in frames with lower
periodicity (such as during onsets) and frames affected by bleed.

The subjective evaluation results indicate, first, that all of the
proposed improvements have resulted in audible improvements of
the synthesized guitar performance. Secondly, we did not observe
any significant differences in MOS between the sample-based base-
line and the natural audio. This can possibly be attributed to the
fact that the natural audio comes from an academic dataset in-
tended for music transcription research rather than listening. There-
fore, the recording conditions, post-processing and precision of
tuning and intonation may not have been prioritized in the record-
ing of GuitarSet to the same extent as in the recording of the
sample library used by ample-gtr. It is also intriguing that
unified had a higher MOS rating than oracle-syn. One ex-
planation for this could be that unified generates more stable
pitch contours than the noisy pitch contours from CREPE used by
oracle-syn as can be seen in Figure 4. Furthermore, although
the proposed unified system was not as good as the sample-
based system ample-gtr, we can see that it was able to synthe-
size guitar sounds of reasonable quality despite being trained on
only a few hours of data.

The fact that unified obtained the highest MOS suggests
that using intermediate control features hurts synthesis quality com-
pared to predicting synth parameters end-to-end from MIDI. How-
ever, these control features might still have the benefit of offering
interesting control surfaces for a user [5].

Additionally, the fact that the proposed systems whose F0 con-
tour was closest to the MIDI pitch contour raises the question
whether we can use the input MIDI pitch as a proxy for F0 rather
than the predicted F0 on frames where notes are active. We pro-
vide an option to snap the F0 contour to the MIDI pitch at inference
time in our code.

5. COMPARISON WITH SIMILAR WORK

Recent work by Wiggins et al. [15] also proposed a different ar-
chitecture for DDSP based guitar synthesis. The most important
differences in architecture is their use of an inharmonic oscillator

and using MIDI pitch directly as the pitch contour during training.
It is important to note that while both works use the GuitarSet [11]
dataset, [15] uses a different data splitting scheme resulting in less
data used for training; they use 6 minutes of training data while
we use about 2.5 hours of training data. Additionally, they target
16kHz while we target 48kHz. With these differences in mind,
we invite the reader to listen to their audio examples 3. Future
work will seek to make meaningful comparisons between the two
approaches across various training data sizes and sampling rates.

6. CONCLUSION

We have developed four different DDSP-based neural waveform
synthesis systems for polyphonic guitar performance from string-
wise MIDI input, and compared them with both objective metrics
and subjective evaluation against natural audio and a sample-based
baseline.

We find that switching from control feature regression to con-
trol feature classification improves performance considerably. Fur-
thermore, we find that joint training of control and synthesis sub-
modules further improves the synthesis quality. We have also sug-
gested a simplification of the control synthesis architecture, which
further improves synthesis quality.

Although the proposed systems were not as good as the sample-
based baseline, our unified system is able to synthesize guitar
performance of reasonable quality with only a few hours of data.

7. LIMITATIONS & FUTURE WORK

We will now discuss limitations of our work and how these might
be adressed in future work. Our proposed approach relies on a
manually MIDI transcriptions and on hexaphonic audio being avail-
able in order to extract F0 contours for each string. The need for
a transcription can potentially be met by an automatic transcrip-
tion system. Similarly, the requirement for hexaphonic data for
extracting F0 contours might be addressed with multi-pitch esti-
mation. Additionally, the errors in the target F0 contours derived
from the hexaphonic data could possibly be reduced with addi-
tional processing of the CREPE predictions.

Our work did not investigate using MIDI pitch as a proxy for
F0 during training as done by [15]. Future work could investigate
how using the MIDI pitch as a proxy for F0 contour during training
affects synthesis quality across various training data set sizes.

Finally, since our proposed systems uses bi-directional layers,
they are not suitable for real-time applications. Future work could
investigate the viability of using a causal model instead.

8. ACKNOWLEDGMENTS

This work is supported by JST CREST Grants (JPMJCR18A6 and
JPMJCR20D3) and MEXT KAKENHI Grants (21K17775, 21H04906,
21K11951, 22K21319) as well as MUSAiC: Music at the Fron-
tiers of Artificial Creativity and Criticism (ERC-2019-COG No.
864189).

3These can be found https://twilight-bougon-45a.notion.site/A-
Differentiable-Acoustic-Guitar-Model-for-String-Specific-Polyphonic-
Synthesis-ee24cf07004f44a7aef78302be2621ea

DAFx.6

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

213

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

9. REFERENCES

[1] Diemo Schwarz, “Concatenative sound synthesis: The early
years,” Journal of New Music Research, vol. 35, pp. 3–22,
03 2006.

[2] Mikael Laurson, Cumhur Erkut, Vesa Välimäki, and Mika
Kuuskankare, “Methods for Modeling Realistic Playing in
Acoustic Guitar Synthesis,” Computer Music Journal, vol.
25, no. 3, pp. 38–49, 2001, Publisher: The MIT Press.

[3] Jesse Engel, Chenjie Gu, Adam Roberts, and others, “DDSP:
Differentiable Digital Signal Processing,” in International
Conference on Learning Representations, 2019.

[4] Nicolas Jonason and Bob Sturm, “Neural music instrument
cloning from few samples,” in 25th International Confer-
ence on Digital Audio Effects (DAFx20in22), Vienna, Aus-
tria, September 2022, 2022.

[5] Yusong Wu, Ethan Manilow, Yi Deng, Rigel Swavely, Kyle
Kastner, Tim Cooijmans, Aaron Courville, Cheng-Zhi Anna
Huang, and Jesse Engel, “MIDI-DDSP: Detailed Control of
Musical Performance via Hierarchical Modeling,” in Inter-
national Conference on Learning Representations, 2021.

[6] Lenny Renault, Rémi Mignot, and Axel Roebel, “DDSP-
Piano: a Neural Sound Synthesizer Informed by Instrument
Knowledge,” AES - Journal of the Audio Engineering So-
ciety Audio-Accoustics-Application, 2023, Publisher: Audio
Engineering Society Inc.

[7] Rodrigo Castellon, Chris Donahue, and Percy Liang, “To-
wards realistic midi instrument synthesizers,” in NeurIPS
Workshop on Machine Learning for Creativity and Design,
2020.

[8] Nicolas Jonason, Bob Sturm, and Carl Thomé, “The control-
synthesis approach for making expressive and controllable
neural music synthesizers,” in 2020 AI Music Creativity Con-
ference, 2020.

[9] Masaya Kawamura, Tomohiko Nakamura, Daichi Kitamura,
Hiroshi Saruwatari, Yu Takahashi, and Kazunobu Kondo,
“Differentiable Digital Signal Processing Mixture Model for
Synthesis Parameter Extraction from Mixture of Harmonic
Sounds,” in ICASSP 2022 - 2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
May 2022, pp. 941–945, ISSN: 2379-190X.

[10] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Si-
mon, Cheng-Zhi Anna Huang, Sander Dieleman, Erich
Elsen, Jesse Engel, and Douglas Eck, “Enabling factorized
piano music modeling and generation with the MAESTRO
dataset,” in International Conference on Learning Represen-
tations, 2019.

[11] Qingyang Xi, Rachel M Bittner, Johan Pauwels, Xuzhou Ye,
and Juan Pablo Bello, “GuitarSet: A Dataset for Guitar Tran-
scription.,” in ISMIR, 2018, pp. 453–460.

[12] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Diele-
man, Mohammad Norouzi, Douglas Eck, and Karen Si-
monyan, “Neural Audio Synthesis of Musical Notes with
WaveNet Autoencoders,” in Proceedings of the 34th Inter-
national Conference on Machine Learning. July 2017, pp.
1068–1077, PMLR, ISSN: 2640-3498.

[13] The Sound of AI Community, “From Words to Sound: Neu-
ral Audio Synthesis of Guitar Sounds with Timbral Descrip-
tors,” Sept. 2022, Publication Title: Proceedings of the 3rd
Conference on AI Music Creativity Publisher: AIMC.

[14] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan
Gulrajani, Chris Donahue, and Adam Roberts, “GANSynth:
Adversarial Neural Audio Synthesis,” in International Con-
ference on Learning Representations, 2018.

[15] Andrew Wiggins and Youngmoo Kim, “A Differentiable
Acoustic Guitar Model for String-Specific Polyphonic Syn-
thesis,” in 2023 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), New Paltz,
NY, USA, Oct. 2023, pp. 1–5, IEEE.

[16] Emery Schubert, Joe Wolfe, and Alex Tarnopolsky, “Spec-
tral centroid and timbre in complex, multiple instrumental
textures,” Aug. 2004.

[17] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Il-
lia Polosukhin, “Attention Is All You Need,” Dec. 2017,
arXiv:1706.03762 [cs].

[19] Matti Karjalainen and Hanna Järveläinen, “Is inharmonic-
ity perceivable in the acoustic guitar?,” in Proc. of Forum
Acusticum, 2005, vol. 2005.

[20] Xin Wang, Shinji Takaki, and Junichi Yamagishi, “Neu-
ral source-filter waveform models for statistical paramet-
ric speech synthesis,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 402–415,
2019, Publisher: IEEE.

[21] Shihao Zhang, Linlin Yang, Michael Bi Mi, Xiaoxu Zheng,
and Angela Yao, “Improving Deep Regression with Ordi-
nal Entropy,” in The Eleventh International Conference on
Learning Representations, 2022.

[22] Xuan Shi, Erica Cooper, Xin Wang, Junichi Yamagishi, and
Shrikanth Narayanan, “Can Knowledge of End-to-End Text-
to-Speech Models Improve Neural Midi-to-Audio Synthe-
sis Systems?,” in ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2023, pp. 1–5, IEEE.

[23] Joseph Turian and Max Henry, “I’m Sorry for Your Loss:
Spectrally-Based Audio Distances Are Bad at Pitch,” in
”I Can’t Believe It’s Not Better!”NeurIPS 2020 workshop,
2020.

[24] Ben Hayes, Charalampos Saitis, and György Fazekas, “Si-
nusoidal Frequency Estimation by Gradient Descent,” in
ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), June
2023, pp. 1–5.

[25] Thomas Pratzlich, Rachel M. Bittner, Antoine Liutkus, and
Meinard Muller, “Kernel Additive Modeling for interfer-
ence reduction in multi-channel music recordings,” in 2015
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), South Brisbane, Queensland,
Australia, Apr. 2015, pp. 584–588, IEEE.

DAFx.7

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

214

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

[26] Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo
Bello, “Crepe: A convolutional representation for pitch esti-
mation,” in 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 2018, pp. 161–
165, IEEE.

[27] Max Morrison, “torchcrepe,” 2022.

[28] Brian McFee, Colin Raffel, Dawen Liang, D. Ellis, Matt
McVicar, Eric Battenberg, and Oriol Nieto, “librosa: Au-
dio and Music Signal Analysis in Python,” in Processings of
the 14th Python in Science Conference, 2015.

[29] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” CoRR, vol. abs/1412.6980, 2014.

[30] AmpleSound, “Ample Guitar M Lite,” 2015, AmpleSound.

[31] Mann–Whitney Test, pp. 327–329, Springer New York, New
York, NY, 2008.

DAFx.8

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

215

	1 Introduction
	2 Proposed systems
	2.1 Default configuration
	2.2 Control feature prediction as a classification task
	2.3 Joint training of control and synthesis sub-modules
	2.4 Unified model

	3 Experiments
	3.1 Experimental conditions
	3.2 Evaluation

	4 Discussion
	5 Comparison with similar work
	6 Conclusion
	7 Limitations & Future work
	8 Acknowledgments
	9 References

@inproceedings{DAFx24_paper_49,
 author = "Jonason, Nicolas and Wang, Xin and Cooper, Erica and Juvela, Lauri and Sturm, Bob L. T. and Yamagishi, Junichi",
 title = "{DDSP-Based Neural Waveform Synthesis of Polyphonic Guitar Performance From String-Wise MIDI Input}",
 booktitle = "Proceedings of the 27-th Int. Conf. on Digital Audio Effects (DAFx24)",
 editor = "De Sena, E. and Mannall, J.",
 location = "Guildford, Surrey, UK",
 eventdate = "2024-09-03/2024-09-07",
 year = "2024",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 doi = "",
 pages = "208--215"
}

