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ABSTRACT

The synthesis of guitar tones was one of the first uses of physical
modeling synthesis, and many approaches (notably digital waveg-
uides) have been employed. The dynamics of the string under
playing conditions is complex, and includes nonlinearities, both
inherent to the string itself, and due to various collisions with the
fretboard, frets and a stopping finger. All lead to important percep-
tual effects, including pitch glides, rattling against frets, and the
ability to play on the harmonics. Numerical simulation of these
simultaneous strong nonlinearities is challenging, but recent ad-
vances in algorithm design due to invariant energy quadratisation
and scalar auxiliary variable methods allow for very efficient and
provably numerically stable simulation. A new design is presented
here that does not employ costly iterative methods such as the
Newton-Raphson method, and for which required linear system
solutions are small. As such, this method is suitable for real-time
implementation. Simulation and timing results are presented.

1. INTRODUCTION

Sound synthesis based on physical models of stringed instruments
is a very old topic, with its origins in the quasi-physical feedback
delay model of Karplus and Strong [1, 2]. Major advances fol-
lowed from the physical interpretation of the bidirectional delay-
line pair or digital waveguide [3, 4] in terms of traveling waves—
opening the door to physical modeling for a wide array of instru-
ment types, including the guitar [5, 6], the subject of this paper.

More recently, increasingly sophisticated models of the gui-
tar have seen investigation. One avenue has been pure musical
acoustics research, where full three-dimensional modeling of the
interaction of the guitar body with the acoustic field is incorpo-
rated [7, 8]. Another, geared towards synthesis applications, has
been the investigation of interactions between the string, finger and
fretboard, allowing for a great deal of gestural control and nuance
in performance. Various techniques have been employed, includ-
ing digital waveguides [9], modal methods [10] and time-stepping
methods such as the finite difference time domain (FDTD) method
[11, 12], which have their roots in very early attempts at synthesis
[13]. Here, we adopt the latter approach, due to the very general
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flexibility of FDTD in handling multiple nonlinearities simultane-
ously. Such methods capture many subtle musical effects, includ-
ing tapping, the rattling of strings against the frets and fretboard,
and also the ability to play on string harmonics. See [14].

Such brute-force simulation methods are computationally in-
tensive, and the move to real time is non-trivial. This expense
stems from the strong collision nonlinearities, and the need for
provably stable numerical methods (such as those ensuring en-
ergy conservation) for robust behaviour. These nonlinearities
have been dealt with previously using iterative methods, such as
Newton-Raphson, which are computationally intensive, and inher-
ently serial. Recent algorithmic advances, based on invariant en-
ergy quadratisation (IEQ) [15, 16] and scalar auxiliary variable
(SAV) [17, 18] approaches offer a means of sidestepping iterative
methods entirely, and have been employed previously in order to
accelerate physical modeling synthesis for strongly nonlinear in-
struments to the real-time threshold [19]. In particular, IEQ/SAV
have seen use in modeling collisions within the context of musical
acoustics [20, 21, 22]. In these studies, it was noted that computing
the nonlinear collision force directly as the analytic potential en-
ergy gradient produced spurious oscillations, causing anomalous
results in simulation, and various solutions have been proposed.
Here, we present a variation of that in [22].

This paper can thus be viewed as a belated follow-up to a
DAFx paper [11] from 2014, which outlined a full synthesis model
of the finger/string/fretboard interaction—though well out of real
time. Applying IEQ and SAV approaches allows for real-time
performance for a full model of guitar string vibration for multi-
ple strings, including four simultaneous nonlinearities: a) the dis-
tributed geometric nonlinearity in a string vibrating at high ampli-
tudes; b) the interaction between a string with a smooth fretboard;
c) the interaction between a string and an array of point-like obsta-
cles (frets), and d) the interaction between the finger and string.

A complete model of transverse string vibration in a single
polarization, including the various nonlinearities listed above, is
described in Section 2, followed by a spatially semi-discrete form
in Section 3, and a fully time-discrete algorithm in Section 4. Real-
time implementation details and timing results follow in Section
5. and some numerical illustrations appear in Section 6. Some
concluding remarks are offered in Section 7. Sound examples are
available at the companion page 1.

2. MODEL SYSTEM

The model employed here appeared previously, with some minor
alterations, in [11, 12], and will be presented in condensed form

1https://physicalaudio.co.uk/guitar/
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Figure 1: Guitar model, illustrating the string (in green), the fretboard and frets (in blue), the finger (in red), and plucking excitation force
(in yellow).

here. See Figure 1. The general equation of motion is

L = Fe + FKC + FB + FF + FFG . (1)

The terms above are differential operators applied to u = u(x, t),
which represents the transverse displacement of a string in a single
polarization (generally taken here to be perpendicular to the fret-
board), and depends on spatial coordinate x ∈ [0, L], for a string
length L in m, and time t in s. Boundary conditions are assumed
to be of simply supported type at the string endpoints, so that

u(0, t) = ∂2
xu(0.t) = u(L, t) = ∂2

xu(L, t) = 0 . (2)

Output is assumed drawn directly from the string displacement at
x = xo as y(t) = u(xo, t).

The linear free vibration of the string is encapsulated in the
standard term L(u), defined as

L = ρA∂2
t u−T0∂

2
xu+EI∂

4
xu+2ρAσ0∂tu−2ρAσ1∂t∂

2
xu (3)

where ∂t and ∂x indicate partial differentiation with respect to t
and x, respectively. The various parameters that appear here are: ρ,
the mass density in kg· m−3; A = πr2, the string cross-sectional
area in m2 for a string of radius r m; T0, the string tension in N;
E, Young’s modulus for the string, in Pa; I = πr4/4, the moment
of inertia of the string; and σ0 ≥ 0 and σ1 ≥ 0, two parameters
that give frequency-dependent control over decay time—see [23]
for a means of calibrating these values against 60 dB decay times.

The remaining terms in (1) are force densities, defined over
the domain x ∈ [0, L], and are presented consecutively below.

2.1. Plucking Excitation

Fe = Fe(x, t) constitutes the pointwise external forcing of the
string due to a single upward pluck, and may be modelled as

Fe = δ(x− xe)fe(t) . (4)

Here, δ(x − xe) is a Dirac delta function selecting the plucking
location x = xe, and fe(t) is a parameterized function of the form

fe(t) =

{
famp sin

2
(
π(t−te)

2∆

)
when te ≤ t ≤ te +∆

0 otherwise
(5)

where here, famp is a maximum amplitude in N, te is the start time
of the pulse in s, and ∆ is the duration in s.

2.2. Geometric Nonlinearity

There are many possible models of geometric nonlinearity in
strings [24]—most important here is the pitch glide effect, audible
in guitar plucks at high amplitudes. This is most easily modeled
through the simple Kirchhoff-Carrier model [25, 26], for which the
additional force density FKC is defined as

FKC =
EA

2L

(∫ L

0

(∂xu)
2 dx

)
∂2
xu . (6)

The Kirchhoff-Carrier model has been used extensively in sound
synthesis algorithms—see, e.g., [27, 23].

2.3. Fretboard Interaction

The fretboard (in the absence of frets) is modeled as a smooth
function b(x), with b(x) ≤ 0 (so that the fretboard lies below the
rest position of the string). In the simplest case, one may simply
take b(x) = b0, for a constant offset. The collision force density
may be modelled through a penalty potential as

FB = KB[b− u]αB
+ (7)

where here [·]+ indicates the “positive part of," so [η]+ = (η +
|η|)/2. Here, KB ≥ 0 is the fretboard stiffness, and αB ≥ 1 is
the nonlinearity exponent. This collision force density is active
only when the string is in contact with the barrier, and is otherwise
zero. We employ a simple Hertzian model of contact, in line with
models used in, e.g., piano hammer modelling [28], and in other
models of string-barrier interaction [29, 30].

2.4. Fret Interaction

Assume that there are M frets, located at coordinates x =
x1, . . . , xM . (M is normally between 19 and 24 for standard gui-
tars.) Interactions of the string with the frets is assumed to occur
at their tips located at vertical height m0—again with m0 ≤ 0,
so that the rest position of the string lies above the fret tip. In ad-
dition, m0 ≥ b(xq), q = 1, . . . ,M , so that the frets themselves
protrude from the fretboard. The resulting force density is

FF =
M∑
q=1

KF[m0 − u(xq, t)]
αF
+ δ(x− xq) . (8)
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As in the case of the barrier,KF ≥ 0 is the fret stiffness, and αF ≥
1 is the nonlinearity exponent. The eventual algorithm design is in-
sensitive to the placement of frets—for standard semitone tuning,
frets should be located at coordinates xq = L

(
1− 2−q/12

)
.

2.5. Finger Interaction

The finger interaction must also be modelled as a collision, but in
this case has its own dynamics to account for, as well as exter-
nal forcing. The finger, of mass MFG in kg is assumed to act at
location x = xFG. It is defined by

FFG = −fFGδ(x−xFG) fFG = KFG[u(xFG, t)−w(t)]αFG
+ .

(9)
Here, w(t) is the vertical displacement of the finger—its dynamics
are governed by

MFGẅ = fFG + fe,FG , (10)

where dots indicate ordinary time differentiation. Here, fe,FG(t)
is an externally-supplied driving force, employed in order to trap
the string against the fretboard and frets. (Though we assume xFG

to be constant in this paper, it will ultimately be allowed to vary
over time, in order to effect pitch changes.)

2.6. Energy Balance

The governing equation (1), accompanied by the definitions of the
various force densities in Sections 2.1 to 2.5, satisfies an energy
balance of the following form:

Ḣ +Q = P . (11)

Here, H is the total stored energy in the system in J, Q and P
are the power loss and supplied power, respectively, in W. Fur-
thermore, the stored energy may be decomposed into components
representing the various storage mechanisms:

H = TL + VL + VKC + VB + VF + TFG + VFG , (12)

where components T and V indicate kinetic and potential energy,
respectively. The constituent energy components and power terms
are defined as follows:

TL =
ρA

2

∫ L

0

(∂tu)
2 dx (13a)

VL =
T0

2

∫ L

0

(∂xu)
2 dx+

EI

2

∫ L

0

(
∂2
xu
)2
dx (13b)

VKC =
EA

8L

(∫ L

0

(∂xu)
2 dx

)2

(13c)

VB =
KB

αB + 1

∫ L

0

[b− u]αB+1
+ dx (13d)

VF =
KF

αF + 1

M∑
q=1

[m0 − u(xq, t)]
αF+1
+ (13e)

TFG = MFG
2
ẇ2 (13f)

VFG = KFG
αFG+1

[u(xFG, t)− w]αFG+1
+ (13g)

Q = 2ρA

(∫ L

0

σ0 (∂tu)
2 + σ1 (∂t∂xu)

2 dx

)
(13h)

P = fe∂tu(xe, t) + fe,FGẇ . (13i)

Note that H ≥ 0 and Q ≥ 0, implying that the system is dissipa-
tive in the absence of external forcing, or that H(0) ≥ H(t) ≥ 0.

3. SEMI-DISCRETE FORM

It is useful, as an intermediate step, to perform a spatial semi-
discretisation of the system defined in the previous section. Sup-
pose that the domain [0, L] has been discretised with a grid spacing
h, for integer N = L/h. Under supported boundary conditions in
(2), a semi-discrete approximation to u(x, t) may then be written
as the (N − 1)× 1 column vector u(t), where

u = [u1, . . . , uN−1]
T , (14)

where T indicates transposition. In the vectorised setting, the sec-
ond spatial derivative ∂2

x may be approximated by the (N − 1)×
(N − 1) negative-definite matrix D, which is of the form

D =
1

h2


-2 1
1 -2 1

. . .
. . .

. . .
1 -2 1

1 -2

 .

Consider a Dirac delta function selecting the location x = xc.
It may be approximated as

δ(x− xc) → 1

h
j(xc) , (15)

where j(xc) is an (N−1)×1 column vector. It may be constructed
by a variety of means using, perhaps, Lagrange interpolation. In
general, it will be sparse and must satisfy the first moment condi-
tion [31], or that 1T j(xc) = 1, where 1 is an (N − 1) × 1 vector
consisting of ones (mirroring the property of the delta function that
it integrates to unity). See [23]. Such a representation here can be
used directly in order to simulate a pointwise forcing (as in (4), (8)
or (9)), or as an interpolant, as in (8) or (9), so that

u(xc, t) →
(
j(xc)

)T
u(t) . (16)

The object here is to arrive at a semi-discrete form of (1):

L(s) = F (s)
e + F (s)

KC + F (s)
B + F (s)

F −F (s)
FG . (17)

Distinct approaches to semi-discretisation will be taken for the dif-
ferent components of the model, grouped into categories as below.

3.1. Linear Operator and Excitation

The linear operator (3) may be semi-discretised immediately as

L(s) = ρAü−T0Du+EID2u+2ρAσ0u̇−2ρAσ1Du̇ . (18)

Using an approximation to a delta function as in (15), centered at
xe, the excitation force density (4) may be semi-discretised as

F (s)
e =

1

h
j(xe)fe(t) . (19)

3.2. Geometric Nonlinearity

For the geometric nonlinearity, with force density as defined in (6),
a semi-discrete form follows, using summation by parts, as

F (s)
KC = −EAh

2L

(
uTDu

)
Du . (20)
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3.3. Fretboard and Frets

For the fretboard and frets, a different approach is taken here,
following the SAV methodology. Here, beginning from a semi-
discrete potential energy term V

(s)
∗ (u), one may write

V (s)
∗ = 1

2
ψ2

∗ , (21)

where here, ψ is a scalar auxiliary variable—the key here is that the
potential energy contribution has been quadratised. At this point,
semi-discrete force densities follow as

F (s)
∗ = − 1

h
∇uV

(s)
∗ = − 1

h
ψ∗ ∇uψ∗︸ ︷︷ ︸

g

, (22)

where ∇u is a gradient with respect to the dependent variable u. ψ
becomes a new state variable, to be updated in an eventual discrete-
time implementation. To this end, note that one may write

ψ̇∗ = (∇uψ∗)
T u̇ = gT∗ u̇ . (23)

The relevant semi-discrete potential energy terms, correspond-
ing to the fretboard and frets are:

V
(s)
B = KBh

αB+1
1T [b− u]αB+1

+ (24a)

V
(s)
F =

KF

αF + 1

M∑
q=1

[
m0 −

(
j(xq)

)T
u

]αF+1

+

. (24b)

Here, b = [b1, . . . , bN−1]
T is the fretboard profile sampled at the

N − 1 interior grid locations.

3.4. Finger

The case of the finger is similar to that of the frets and fretboard
outlined above, but now the potential energy must include contri-
butions from both the string and finger. Now, one may write

V
(s)
FG =

KFG

αFG + 1

[(
j(xFG)

)T
u− w

]αFG+1

+

=
1

2
ψ2

FG (25)

and thus

F (s)
FG = − 1

h
ψFG ∇uψFG︸ ︷︷ ︸

gFG

and f
(s)
FG = −ψFG

∂ψFG

∂w︸ ︷︷ ︸
g′FG

. (26)

The defining equation for w remains as in (10). It also follows that

ψ̇FG = gTFGu̇+ g′FGẇ . (27)

The computation of g∗ and g′FG needs to be handled
carefully—see Section 4.7 for details.

3.5. Energy Balance

An energy balance in the semi-discrete case is of the form of (11):

Ḣ(s) +Q(s) = P (s) , (28)

where H(s) has the same decomposition as in the continuous case
in (12). For the linear system,

T
(s)
L =

ρAh

2
∥u̇∥2 V

(s)
L = −T0h

2
uTDu+

EIh

2
uTD2u (29)

where for a vector f , ∥f∥2 = fT f . For the nonlinearities,

V
(s)
KC =

EAh2

8L

(
uTDu

)2
V

(s)
B,F,FG =

1

2
ψ2

B,F,FG . (30)

The kinetic energy for the finger, from (13f) remains unchanged
under discretisation, and the loss and power terms become

Q(s) = 2ρAh
(
σ0∥u̇∥2 − σ1u̇

TDu̇
)

(31a)

P (s) = fe
(
j(xe)

)T
u̇+ f

(ext)
FG ẇ . (31b)

The non-negativity property of H(s) and Q(s) persists in the semi-
discrete case (note that D is negative definite by construction).

4. FULLY DISCRETE FORM

First define a time step k = 1/fs in terms of a specified audio
sample rate fs in Hz. The (N − 1) × 1 vector un represents an
approximation to u(t) at t = nk, for integer n. The excitation
force signals fe(t) and fFG(t) may be sampled as fne and fnFG,
respectively. For auxiliary variables ψ∗(t), as defined in (21), an
interleaved approximation ψn+1/2

∗ is employed, representing an
approximation to ψ∗(t) at t = (n+ 1/2)k for integer n.

Basic shifts e+ and e−, applied to a time series ζν , where ν is
either integer, or half-integer, are defined as

e+ζ
ν = ζν+1 e−ζ

ν = ζν−1 . (32)

Forward, backward and centered difference approximations to a
first time derivative follow as

D± = ± 1
k
(e± − 1) D◦ = 1

2k
(e+ − e−) (33)

and averaging operators M± and M◦ as

M± = 1
2
(1 + e±) M◦ = 1

2
(e+ + e−) . (34)

An approximation to a second time derivative follows as

D2 = D+D− = 1
k2

(e+ − 2 + e−) . (35)

As in the semi-discrete case, we proceed through the various
components of the full model.

4.1. Linear Operator and Excitation

The linear semi-discrete operator defined in (18) may be discre-
tised as follows

L(d),n = ρAD2u
n − T0Dun + EID2un (36)

+ 2ρAσ0D◦u
n − 2ρAσ1D−Dun .

This is the standard “explicit" discretisation of the linear stiff string
[23]. The semi-discrete form of the excitation force density from
(19) remains the same, under the replacement of fe(t) by fne .

4.2. Geometric Nonlinearity

Following early work on energy-conserving numerical methods
for the Kirchhoff-Carrier string [32], the fully discrete form of the
force density is chosen to be

F (d),n
KC = −EAh

2L

(
(un)TDM◦u

n
)
Dun . (37)

Note the appearance of the additional time-averaging operation
M◦, as defined in (34). A scalar auxiliary variable is not neces-
sary in the discretisation of this nonlinearity.
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4.3. Collisions: Fretboard and Frets

For the fretboard and frets, one may begin from the semi-discrete
forms in (22) and (23), which may be discretized [18] as

F (d),n
∗ = − 1

h

(
M−ψ

n+1/2
∗

)
gn∗ (38a)

D−ψ
n+1/2
∗ = (gn∗ )

T D◦u
n . (38b)

4.4. Collisions: Finger

Finally, the dynamics of the finger are discretised as

MFGD2w
n = f

(d),n
FG + fne,FG (39)

where fne,FG is sampled from fe,FG(t). The force density and
force may be written as

F (d),n
FG = − 1

h

(
M−ψ

n+1/2
FG

)
gnFG f

(d),n
FG = − (M−ψFG) g

′,n
FG .

(40)
It also follows that

D−ψ
n+1/2
FG = (gnFG)

T D◦u
n + g′,nFGD◦w

n . (41)

4.5. Energy Balance and Stability Condition

A discrete-time energy balance follows from the scheme above as

D−H
(d) +Q(d) = P (d) , (42)

where the decomposition of H(d) = H(d),n+1/2 is as in the con-
tinuous and semi-discrete cases, with all terms now assumed de-
fined at time step n+ 1/2. For the linear system,

T
(d)
L = ρAh

2
(D−u

n+1)T (IN−1 + σ1kD)D−u
n+1 (43a)

V
(d)
L = h

2
(un)T

(
−T0D+ EID2)un+1 . (43b)

For the nonlinearities,

V
(d)
KC = EAh2

8L

((
un+1)T Dun

)2
V

(d)
B,F,FG = 1

2

(
ψ
n+1/2
B,F,FG

)2
.

(44)
For the finger inertia, one has

T
(d)
FG = MFG

2
(D−w

n+1)2 . (45)

The loss and power terms, defined at time step n, become

Q(d) = 2ρAh
(
σ0∥D◦u

n∥2 − σ1(D◦u
n)TDD◦u

n
)

(46a)

P (d) = fne

(
j(xe)

)T
D◦u

n + fne,FGD◦w
n . (46b)

For stability, note first that Q(d) ≥ 0. It remains to find
conditions under which the stored energy H(d) ≥ 0. Given that
the nonlinear potential energy contributions from (44) are all non-
negative, all that is necessary is to find a non-negativity condition
on the linear potential and kinetic energy terms, from (43). This
leads, ultimately, to the bound h ≥ hmin, where

h2
min = k

2

(
T0k
ρA

+ 4σ1 +

√(
T0k
ρA

+ 4σ1

)2
+ 16EI

ρA

)
. (47)

This serves as a numerical stability condition for the scheme [11].

4.6. Condensed Vector-matrix Update Form

The scheme presented in the previous sections is undeniably
complex—mainly because of the use of disparate discretisation
approaches for different parts of the problem—all in the interest
of maximizing efficiency. The key feature is that in all the up-
dates presented, the unknown appears linearly, meaning that iter-
ative methods such as Newton-Raphson are not needed. What is
perhaps less obvious is that the algorithm is mainly explicit, with
only a small (size four) linear system solution required. It is thus
useful to see the ultimate form of the update.

First, define a combined state zn = [(un)T , wn]T , including
both the string displacement and finger displacement in a single
N × 1 column vector. Furthermore, one may also consolidate
the three scalar potentials into a single 3 × 1 column vector as
Ψn+1/2 = [ψ

n+1/2
B , ψ

n+1/2
F , ψ

n+1/2
FG ]T , and the two input force

signals into a 2×1 vector fn = [fne , f
n
e,FG]

T . Given zn and zn−1,
as well as Ψn−1/2, it is possible to write the entire update as the
sequence of operations

Anzn+1 = bn Ψn+1/2 = Ψn−1/2+ 1
2
(Gn)T

(
zn+1 − zn−1) .

(48)
In the primary update of zn+1, An and bn are an N × N

matrix and N × 1 vector, respectively; both must be constructed
anew at each time step. The vector bn may be written as

bn = Bzn +Czn−1 +Efn (49)
−ΛGnΨn−1/2 + 1

4
ΛGn(Gn)T zn−1 − kn(kn)T zn−1 .

Here, B and C are N ×N constant matrices, and E is an N × 2
constant matrix, defined by

B =

[
1

1+σ0k

(
2IN−1+

T0k
2

ρA
D− EIk2

ρA
D2+2σ1kD

)
0

0 2

]
(50a)

C =

[
1

1+σ0k
((σ0k − 1)IN−1 − 2σ1kD) 0

0 −1

]
(50b)

E =

[
k2

ρAh(1+σ0k)
je 0

0 k2

MFG

]
(50c)

that represent the linear dynamics of the string simulation, where
IN−1 is the (N − 1)× (N − 1) identity matrix. All are extremely
sparse. The term involving the N × 3 matrix Gn and N × N
constant diagonal scaling matrix Λ, defined by

Gn =

[
gnB gnF gnFG

0 0 g′,nFG

]
Λ =

[
k2

ρAh(1+σ0k)
IN−1 0

0 k2

MFG

]
(51)

follow from the collision model. Notice that the same matrix Gn

is used in the update of Ψn+1/2, from (48). The N × 1 vector kn

follows from the Kirchhoff-Carrier model, and is defined as

kn = k
2

√
Eh

ρL(1+σ0k)
[(Dun)T , 0]T . (52)

Finally, the matrix A is defined as

A = IN + 1
4
ΛGn(Gn)T + kn(kn)T . (53)

In terms of computational cost, the main nontrivial operations
are the calculations of the vectors g∗—see the next section for
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more details. Beyond this, all other operations are sparse. An
exception is the need for a linear system solution in (48) involv-
ing the N × N matrix An in (53). But An is in the form of a
low-rank (four) perturbation of the identity, and thus very efficient
resolution methods such as the Woodbury identity [33] can be em-
ployed. This avoids both the computational expense of iterative
methods, and of fully linearly-implicit methods, where in general
one would require the resolution of a full linear system of size N ,
and thus is the key to real-time performance.

Audio output yn is drawn from the string as yn = (j(xo))Tun,
where j(xo) is an interpolant selecting the location x = xo.

4.7. Calculation of Potential Gradients

Vectors of the form gn∗ , which scale with the gradient of a poten-
tial, and as defined in (22), play a central role in the operation of
the scheme described above. The simplest choice for computing
the nonlinear potential gradients is using the analytic expressions:

g̃n∗ =
(∇uV∗)

n

√
2V n∗ + ϵ

g̃′,nFG =
(∂VFG/∂w)

n√
2V nFG + ϵ

(54)

where ϵ is a small gauge constant [18], in this case set as machine
epsilon. Here, the values V n∗ are obtained by evaluating equations
(24) and (25) at time step n, and the gradients take the form:

(∇uVB)
n = −hKB[b− un]αB

+ (55a)
(∇uVF)

n = −KF [m0 − J⊺un]αF (55b)

(∂VFG/∂w)
n = −KFG

[(
j(xFG)

)T
un − wn

]αFG

+

(55c)

(∇uVFG)
n = −j(xFG)(∂VFG/∂w)

n (55d)

where J is a (N − 1) × M matrix whose columns are the fret
interpolators j(xq).

It is known, however, that simply using the analytic values pro-
duces an anomalous behaviour of the auxiliary variable ψn−1/2,
that a) can exhibit long-term drift [34], and b) exhibits spurious
sign flipping, meaning that the resulting force may be oriented in-
correctly. The solution proposed in [22] is to impose the constraint
ψn+1/2 ≥ 0. This results in a quadratic equation to be solved dur-
ing contact times, yielding a scaling factor for g̃n∗ . In this work,
we propose a similar method, applied here to the computation of
g̃nB and g̃nF (and not to the finger, which exhibited less drift than
in the case of the fretboard or frets). The technique described here
is based on the constraint: M−ψ

n+1/2
∗ ≥ 0. In fact, from (38a),

it is apparent that if M−ψ
n+1/2
∗ remains positive, the sign of the

expression is determined only by gn∗ , which is negative by defi-
nition. This ensures that the force F (s)

∗ is oriented upwards. By
considering equation (38b), the constraint becomes:

2ψn−1/2
∗ +

1

2
(gn∗ )

T (ûn+1 − un−1) ≥ 0 . (56)

Here, ûn+1 is the update of the system with no external forc-
ing, and in presence of only the relevant nonlinearity (from the
fretboard or frets). In this case, the Woodbury identity reduces to
the Sherman-Morrison formula [35], and one has:

ûn+1 = b̂n −
1
4
Λ̂gn∗ (g

n
∗ )

⊺b̂n

1 + 1
4
(gn∗ )⊺Λ̂gn∗

, (57)

with

b̂n = B̂un+Ĉun−1−Λ̂gn∗ψ
n−1/2
∗ + 1

4
Λ̂gn∗ (g

n
∗ )

⊺un−1 . (58)

Here, B̂, Ĉ, Λ̂ are the upper left-hand (N − 1) × (N − 1)
blocks of (50a), (50b) and Λ in (51) respectively. By inserting (57)
and (58) into (56) and solving for gn∗ one gets:

4ψn−1/2
∗ + (gn∗ )

⊺(B̂un + Ĉun−1 − un−1)︸ ︷︷ ︸
ξn

≥ 0 . (59)

Now, as in [22], let gn∗ ≜ γg̃n∗ , where γ is a scalar. Then, (59)
becomes a first-order, scalar inequality in γ. The linearity of the
expression guarantees a unique solution under the condition:

γ ≥ −4ψn−1/2/ξn . (60)

Equation (60) yields a scalar multiplier for g̃n∗ , to be applied
when (59) is not satisfied for gn∗ = g̃n∗ . Thus, we set γ as:

γ =


− 4ψn−1/2

ξn
, if ξn ̸= 0 and ξn < −4ψn−1/2

−λ4ψn−1/2

ξn−1 , if ξn = 0 and ξn−1 ̸= 0

1, otherwise

.

(61)
While the upper condition is designed to ensure the non-

negativity of M−ψ
n+1/2
∗ , the purpose of the middle condition is

perhaps less obvious. Here, ξn−1 = (g̃n−1
∗ )⊺(B̂un + Ĉun−1 −

un−1), and the condition is satisfied only at the first instants with-
out contact. Using the gradient from the previous time-step en-
forces M−ψ

n+1/2 = 0, meaning that no residual energy is stored
during non-contact periods. Finally, λ is a scalar multiplier that
allows the condition (60) to be satisfied away from the equality.
Here, it was set λ = 0.5 if −4ψn−1/2/ξn−1 < 0 and λ = 1.5 if
−4ψn−1/2/ξn−1 ≥ 0.

5. REAL-TIME IMPLEMENTATION AND TIMING
RESULTS

The algorithm was prototyped initially in the Matlab environment,
and then ported to offline C++ in order to gauge the CPU per-
formance on a number of different machines. Whilst the vector-
matrix form described in Section 4.6 is algebraically compact and
efficient for prototyping in Matlab, for high performance C++ the
sparse matrix operations are unrolled into their equivalent vector
updates. The core elements of the algorithm that are performed at
each time step are as follows: a) compute the linear update to the
string and finger, for the terms in (49) employing the matrices B,
C and E; b) compute kn from (52), and the accompanying term
in (49); compute the columns of Gn from (51) corresponding to c)
the fretboard, d) the frets and e) the finger, and the accompanying
term in (49); and f) perform the linear system solution required in
(48), using the construction of An from (53) and the Woodbury
identity, and the update of Ψn+1/2 from (48). Final steps of neg-
ligible computational cost are the reading the output and a pointer
swap of the state vectors. With attention to the content and data
arrangement in the FOR loops being used, the Clang compiler at
-Ofast was able to fully vectorise all of the core updates of the
algorithm without the use of manual intrinsics.

Performance testing was carried out on a model containing a
single string with 20 frets on the fretboard and a single finger. The
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tension and radius of the string were varied to give results for a
typical set of acoustic guitar strings from low E to top E tuning.
Test machines were a Mac Pro with a Xeon E5 processor, a Mac
mini with Apple Silicon M1 processor, and MacBook Pro with
an M2 Pro. Table 1 shows the resulting computation times for
simulations of 44100 timesteps.

Table 1: Computation times for C++ over 44100 time-steps.

String Xeon E5 Apple M1 Apple M2 Pro

1 (low E) 0.18s 0.13s 0.11s
2 0.18s 0.13s 0.11s
3 0.15s 0.11s 0.10s
4 0.13s 0.09s 0.08s
5 0.12s 0.08s 0.06s
6 (top E) 0.09s 0.06s 0.04s

These results show that it is possible to run a 6-voice model for
a full guitar simulation within the necessary bounds for a real-time
instrument. Examining the CPU usage for the various elements of
the time-loop computation gives a breakdown as shown in Table 2
for a low E string (the worst case in terms of compute time).

Table 2: Computation breakdown for optimised C++ for a low E
string.

Section Compute %

a) Linear update 2.3%
b) Kirchhoff-Carrier 1.9%
c) Fretboard 19.1%
d) Frets 7.7%
e) Finger 5.1%
f) SAV update and solver 63.9%

6. SIMULATION RESULTS

6.1. Numerical Energy Balance

The numerical energy balance (42) is easily demonstrated under
unforced conditions. In order to incorporate the effects of loss,
it is direct to define a total energy E(d), including stored energy
H(d) and accumulated dissipated energyQ(d) as in Section 4.5, as

E(d),n+1/2 = H(d),n+1/2 +
n∑
ν=0

kQ(d),ν . (62)

This quantity should be conserved to near machine precision. See
Figure 2, illustrating the time evolution of the various components
of the discrete energy, as well as the relative deviation, defined as:
∆En = E(d),n+1/2−E(d),n−1/2

⌊H(d),1/2⌋2
, where the operator ⌊η⌋2 indi-

cates the nearest power of two to η, rounding towards zero.

6.2. Audio Simulations

Figure 3 displays the spectrograms of the output signals in three
different situations: a) the string is plucked with force of fe =
5N, at xe = 0.8L, and only the geometric nonlinearity is active.
A pitch glide is clearly observable; b) the string is plucked as in
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Figure 2: Numerical energy balance. The upper panel displays the
evolution of the discrete energy components over time. The string
is at rest, while the finger is initially positioned above the string,
with a starting velocity of −0.7 m/s. The second panel represents
the relative energy deviation in the same situation, as defined in
Section 6.1.

(a), and all nonlinearities but the finger are active. The rattling
of the string against the fretboard and the frets is evident at the
first instants; c) all nonlinearities are active, and the string is not
plucked, but the finger is excited with a constant force of fe,FG =
0.9 N, the result is similar to a finger tap sound.

7. CONCLUDING REMARKS

An efficient method for the simulation of complex dynamics of
the guitar string has been presented here. In terms of efficiency,
it is near to the “baseline" cost of the simulation of a string under
linear conditions, while retaining the feature of an energy balance,
leading to a stable algorithm. Simulation in real time for a full
six-string acoustic guitar is comfortably within the capability of
modest commercially-available hardware.

This good performance relies on judicious choices of discreti-
sation strategies for the different parts of the problem—explicit
methods for the linear part of the problem, coupled with spe-
cialised energy-based discretisation methods for the nonlinear
components of the dynamics. Here, we have chosen to attack
the four distinct nonlinearities separately, leading to a 4 × 4 lin-
ear system—which is not expensive. A better approach would be
to consolidate all of the nonlinear dynamics into a single scalar
potential, eliminating the need for any linear system solution, at
the expense of less algorithmic control (and in particular the dis-
tinct approaches to the calculation of the potential gradients, as
discussed in Section 4.7.

Many features have not been included here. Most important
are: a) string motion in distinct polarisations, and b) the model-
ing of the coupling to the body and radiation. Incorporating a) is
certainly possible, and would roughly double computational cost,
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Figure 3: Audio simulations: a) plucked string with geometric nonlinearity alone; b) plucked string with geometric, fretboard and frets
nonlinearities; c) finger tap simulation. These spectrograms correspond to a guitar D string, with parameters as given in [11].

and introduce a wider sound palette, through the angle of plucking
relative to the fretboard (and the accompanying additional con-
trol complexity). Incorporating b) through a full physical model
is infeasible, though such effects can be approximated through the
use of measured body responses. Further work in the very near
future will include plugin development, and examining the very
large problem of instrument control—not addressed here.
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