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ABSTRACT

Controlling the variations of sound effects using neural audio syn-
thesis models has been a challenging task. Differentiable digi-
tal signal processing (DDSP) provides a lightweight solution that
achieves high-quality sound synthesis while enabling determinis-
tic acoustic attribute control by incorporating pre-processed audio
features and digital synthesizers. In this research, we introduce
DDSP-SFX, a model based on the DDSP architecture capable of
synthesizing high-quality sound effects while enabling users to
control the timbre variations easily. We integrate a transient mod-
elling algorithm in DDSP that achieves higher objective evalua-
tion scores and subjective ratings over impulsive signals (footsteps,
gunshots). We propose a novel method that achieves frame-level
timbre variation control while also allowing deterministic attribute
control. We further qualitatively show the timbre transfer perfor-
mance using voice as the guiding sound.

1. INTRODUCTION

Sound effects refer to natural or synthetic sounds different from
speech or music. They play an important part in digital media
such as film and games, but typically require intensive labour in
recording. In recent years, deep generative models have demon-
strated their synthesis capability in the audio domain, especially
for modelling speech [1] and music [2]. However, neural audio
synthesis (NAS) methods typically model the audio waveforms or
time-frequency representations directly and require a large amount
of data and computation power. To model sound effects with vary-
ing acoustic characteristics, a large, even vast, set of descriptive
labels [3, 4], may be required, which is often impractical.

Sound effects are diverse and usually difficult to describe using
words. To this end, many synthesis algorithms focus on using
vocalizations to guide sound generation because voice can be an
intuitive control interface for end-users. The supervised phoneme-
based control-synthesis approach, which converts human-produced
phonemes directly to sound effects, has been widely explored [5,
6, 7, 8]. However, such methods typically require ground-truth
labelling between the phonemes and the corresponding sound ef-
fects. The unsupervised approach, which entails extracting acous-
tic features from the guiding sounds and applying such features to
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the generated sound effects, has also proven to be very effective
in musical sound modelling. For example, differentiable digital
signal processing [9] is a popular NAS architecture introduced to
take advantage of pre-built digital synthesizers for waveform gen-
eration. Neural networks are then used to estimate the parameters
for the corresponding synthesizers conditioned on pre-processed
acoustic features. Owing to the modular approach and conditioned
features, DDSP is lightweight to train and use while offering con-
trollable audio synthesis over pre-defined audio features such as
pitch and loudness. Although Lundberg [10] has applied DDSP
to model motor engine sounds, there have been few attempts at
modelling other sound effects, especially impulsive sounds such
as footsteps or gunshots, two commonly used sound effects in
games. To properly model the transient information, Barahona &
Collins [11] proposed an alternative technique to model the inhar-
monic sounds through a controllable filterbank synthesizer under
a similar DDSP framework. However, due to the fixed number
of filterbanks design, it remains questionable whether it is capable
of synthesizing highly time-varying pitched sounds such as motors
accelerating, which constantly changes its pitch and frequency dis-
tributions over time. Additionally, it remains a critical issue as to
how to effectively control the subtle timbre variations of a particu-
lar sound effect driven by vocalizations, given the differing acous-
tic characteristics between voice and various desired sound effects.

In this research, we explore sound effects modelling driven by
acoustic features of target sounds utilizing the DDSP architec-
ture. We are particularly interested in controlling the subtle timbre
characteristics of the target sounds using a guiding sound, such
as varying the type of engines for a motor sound with fixed pitch
and loudness. To this end, we propose a novel approach for frame-
level timbre variation independent of other acoustic attributes. Our
method only requires a trained decoder to transfer the pre-defined
acoustic envelopes and timbre envelopes from one type to another
type of sound, without relying on an additional encoder. We fur-
ther introduce an architecture targeted at the synthesis of impulsive
sound effects based on the DDSP framework.

2. PROPOSED METHOD

We base our model on the vanilla DDSP architecture [9], which
uses a sinusoidal model and a subtractive noise model as synthe-
sizers. To better adapt the DDSP architecture to synthesize high-
quality sound effects, we integrate a separate transient modelling
method in the synthesizer and introduce a technique to avoid har-
monic artifacts. To be able to control the timbre variations effec-
tively, we propose an encoder structure that allows for frame-level
timbre control. Our complete model architecture is depicted in
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Figure 1: Proposed model architecture. Blocks in green are definitive features or algorithms. Blocks in pink are composed of learnable
neural networks. Blocks in grey indicate they are used during the inference phase to replace the trained encoder.

Figure 1. Before the training stage, in addition to the pitch and
loudness vectors described in DDSP [9], we also need to pre-
process the audio to extract a few acoustic features. The acous-
tic features and the latent variable output from the encoder are
concatenated together to be processed by the decoder, which is
composed of several Multi-layer Perceptrons (MLPs) and Gated
Recurrent Units (GRUs) as illustrated in the architecture. The
decoder finally outputs the required synthesis parameters for the
synthesizer, namely, frequencies and amplitudes of the sinusoids
for the additive synthesizer, amplitude vector for the subtractive
noise synthesizer, and finally, frequencies and amplitudes for the
transient model. Lastly, all the synthesized outputs are combined
together as the synthesized out. In the following sections, we elab-
orate on the proposed techniques.

2.1. Harmonic Indicator

A harmonic plus noise model [12] performs well when the target
sound is harmonic. However, when integrated into DDSP, it could
lead to harmonic artifacts or distortion for sounds with little to no
harmonic components. This is because both the harmonic syn-
thesizer and the subtractive noise synthesizer are treated equally
in the synthesis. As the multi-scale STFT loss only considers the
summed energy across each frequency bin, it does not penalize the
excessive harmonics, especially when the target sound contains
mainly noise, with flat energies across each frequency. In figure 2,
we show an example harmonic artifact generated by DDSP of a
footstep sound. When modelling impact sounds such as footsteps
and gunshots, the harmonic plus noise synthesizer tends to assign
too many harmonics in its synthesizer. Therefore, we decided to
employ a harmonic detector to determine the degree of harmonic
components present in the sound and then train the model to atten-
uate when few harmonics are detected. Specifically, during pre-
processing, we scan the entire sound with a pitch detector [13]
across every frame and obtain a confidence score C (0-100%)
for the pitch estimation of the modelled sound. Rather than us-
ing the scores directly as guiding information, we wish to obtain
a smoother and flatter curve to ’activate/deactivate’ the harmonic
synthesizer. To this end, we input C to a custom Sigmoid function

to smooth out the output value as shown below:

H = 1/(1 + e(−a(C−b))) , (1)

where a determines the steepness of the curve, and b determines
the horizontal shift for the Sigmoid function. As both a and b are
hyper-parameters, we later found setting a = 10 and b = 0.7 ef-
fective in training on our dataset. Here, we call the output value
H from the Sigmoid function as the harmonic indicator. This in-
dicator is further passed as input to the decoder as conditioning
information for the presence of harmonic components. When H
returns a low value (indicating low confidence of harmonic infor-
mation present in a frame), the decoder learns to attenuate the har-
monic synthesizer and vice versa.

2.2. Transient modelling

From an analysis perspective, a signal in the time domain could be
separated into three parts [14], harmonic components, transients
(which are modelled as impulses [15, 16], and residual noise. A
transient signal (e.g., gunshots, footsteps) has a sharp attack and
short sustain, which can be difficult for sinusoidal modelling or
subtractive noise modelling. To synthesize transient signals, we
employ a similar modelling approach as [15, 10], i.e., synthesizing
sinusoids in the discrete cosine domain and converting to the time
domain using an inverse Discrete Cosine Transform (IDCT). Due
to the nature of time-frequency transforms, this results in impulses
in the time domain. Instead of placing transients equal-distantly
across the time frames, we instead chose to model them within
each frame, as we wish to treat each transient differently and be
able to control its timbre. A sinusoid in the DCT domain would
translate to a single pulse in the converted time domain through
IDCT. The frequency in the DCT domain controls the time loca-
tion of the pulse, from the start 0ms to 10ms across 160 samples in
a frame. Please note that even though the time is extremely short
(10ms), changing the time location of the pulse would change the
timbre of the impulse clip, as humans are very sensitive to phase
changes in transient sounds. For each of the 400 time frames of
the 4s long signal, a decoder network will learn and output the
parameters of the sinusoids used for transient modelling: i.e., the
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(a) Reference footstep (b) DDSP (c) DDSP-SFX

Figure 2: Harmonic artifacts with DDSP. Notice the horizontal lines prevalent in DDSP synthesized footsteps, especially in the first two
events. By using a harmonic indicator, we are able to attenuate the harmonic synthesizer and thereby rely mostly on our subtractive noise
and transient model for synthesis. To listen to how these sound like, please refer to our accompaniment website: https://reinliu.
github.io/DDSP-SFX/.

frequency Fn and amplitude An. If no transient is present in a
given time frame, then An should be 0. This provides a conve-
nient means for controlling the transient signals. The transient
modelling equation is defined as:

x[n] =

N−1∑
n=0

AnIDCT sin

(
2πFn

t

f

)
, (2)

where x[n] is the modelled transient signal, t is the total time sam-
ples, f is the frame size and N is the total number of frames. In
order to provide guiding information to the decoder, we extract
peak onsets from each sound. The onset amplitude vector is con-
structed from the signal spectrogram using a margin-based Har-
monic Percussive Source Separation (HPSS) method [17] with a
conservative and large margin parameter value of 8 during the pre-
processing stage. Local maxima (peak estimation) is performed to
obtain the onset amplitude vector where the percussive events take
place.

2.3. Frame-level timbre control

In addition to guiding the sound synthesis with explicit acoustic
features such as pitch and loudness, we also wish to encode the
subtle timbre variations of the generated sound into a controllable
latent space. To this end, we employ a similar encoder structure
introduced by Devis et al. [18] and train DDSP as a Variational
Autoencoder (VAE) [19]. We first compute the mel-spectrograms
(128 mel-frequency bands, 400 time frames) of our input sounds
in the pre-processing stage. They become the input to our encoder,
comprising three stacks of convolutional 1-D layers, RELU acti-
vation, and batch normalization layers followed by a linear layer.
The mean and log-variance output from the encoder are then repa-
rameterized to produce the sampled latent vector z:

z = µ+ ϵ · σ2 , (3)

where ϵ is a random value sampled from a unit-Gaussian distribu-
tion, µ is the mean output from the encoder, σ = e0.5·logvar, and
logvar is the logarithm of the variance. In this way, we obtain
a continuous one-dimensional latent vector along the time axis.
The distribution of z is regularized to be close to a unit-Gaussian
N (0, 1). After the model has been trained, we can deliberately

modify the value of z within ±3 as 99.7% of the values are within
three standard deviations. The most "typical" timbres appearing
in the data set are encoded with z close to 0, whereas "rare" tim-
bres are encoded with z values farther away from 0. Once the
model has been trained, we can completely abandon the encoder
structure. In the inference stage, apart from explicit control over
pitch and amplitude, we can also output different timbres of the
sound (eg. transforming from a BMW car engine sound to a Mer-
cedes) by creating a control variable at hand within the same range
±3 to replace z for the decoder. A global slider is used to adjust
this pseudo latent variable and thus vary the timber of the output
sound. In this way, we are able to create interesting sound effects
by providing explicit and implicit control variables along the time
axis. To demonstrate how it works, in section 4, we use human
voice mimicking sound effects as an example to guide the sound
synthesis.

2.4. Loss Function

Our loss function contains a regularization loss component and a
reconstruction loss component. We use the same multi-scale STFT
loss as used in DDSP for our reconstruction loss (FFT sizes: 2048,
1024, 512, 256, 128, 64). For the regularization loss, we apply
a scaling variable β on the regularization loss term to prevent the
reconstruction loss from overtaking the total loss [20]. The total
loss function in our model becomes:

L = Lrec + β · Lreg, (4)

where the L indicates the total loss, Lrec is the reconstruction loss,
and Lreg is the regularization loss.

3. EXPERIMENTS

3.1. Dataset

We use a publicly available sound effects dataset [21]. It includes
7 categories of sound effects, all of which are sampled at 22.5 kHz
and have a length of around 4 seconds. Each category contains
581-800 audio samples. The data used for all of the experiments
described in this paper consists only of footsteps, gunshots and
motor sounds. This is because we found these three categories
contain the most variations and they suit the best for our goal as
to effectively control the timbre of the sounds. We refer to these
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three sound types as our three data sets. All sounds are trimmed to
4 seconds duration and down-sampled at 16 kHz to be consistent
with our neural network architecture. We split the data 90% for
training and 10% for testing.

3.2. Training

We train our model and the vanilla DDSP model on the same three
data sets separately, resulting in three trained models for both the
vanilla DDSP and our proposed method. Each model is trained
with a batch size of 16 on an RTX 6000 GPU for exactly 100,000
training steps. We chose a size of 1024 for the recursive hidden
units of DDSP, 100 sinusoids for the harmonic synthesizer, 100
bands for the noise synthesizer, and a frame size of 160 samples.
We use an ADAM [22] optimizer with a starting learning rate of
1e−4, which gradually decayed to 1e−5 after 80% of the steps.
To maintain a stable regularization loss and balance it with the
reconstruction loss, we initialize β with 0, and activate it only after
10% of the training steps with β = 1, and then scale it linearly to
1e3 until reaching 80% of the training steps.

3.3. Evaluation

To show that our latent space is capable of outputting discernable
timbre variations, we performed a small-scale listening test on 26
participants. To guide the synthesis, we recorded three human vo-
calizations emulating the sound effect for each category of our
data set as our out-of-domain guiding sounds. We then use the
extracted acoustic features from these guiding sounds to perform
timbre transfer. For our latent vector, we manually set z as 0, 0.1,
0.5, 1, 2, and 3 for each sound clip and then generate the sound ef-
fects correspondingly. We use z = 0 as our reference track and ask
the participants to do a forced comparison test to see whether the
individual tracks with z set as different values sound identical to
or different from the reference. The result is shown in Section 4.3.
We evaluate our model in terms of synthesis quality. The tim-
bre encoding performance is demonstrated qualitatively. For each
model, we pair a reference sound with the generated sound. Each
model is tasked to synthesize waveforms similar to those of the
reference by taking in the extracted acoustic features from the ref-
erence. We compare the synthesis performance through a series
of objective metrics and a subjective listening test. We conduct a
second subjective listening test to understand the effectiveness of
our timbre encoding.

3.3.1. Synthesis performance

Statistical similarity. Frechet Audio Distance (FAD) [23] is an
audio quality evaluation method that compares the feature repre-
sentations through an embedding layer of a pre-trained audio clas-
sification model between the generated sounds and the reference
sounds. We compute the FAD score with the VGG model 1 to un-
derstand the statistical similarity of our synthesized sounds com-
pared with the reference sounds.

Spectral similarity. We report the log-spectral distance (LSD) us-
ing a multi-scale STFT to measure the spectral similarity between
the synthesized sound and the reference sounds. It is computed as
the average distance between two power spectra over all frames in

1https://github.com/gudgud96/
frechet-audio-distance

the Euclidean space. We use the same window length, hop length
and FFT size as we did in the pre-processing to compute the spec-
tra.

Audio quality. We conduct a listening test to evaluate the gen-
erated sound quality. We randomly selected ten examples per cat-
egory. For each question, we asked the participants to give an
absolute category rating for each soundtrack from 1 (bad) to 5 (ex-
cellent). We aggregate our results per category of sounds, meaning
that we average the ten-question results and obtain the variance for
the aggregated data.

4. RESULTS

4.1. Audio similarity

Table 1: Objective audio synthesis performance results.

Categories Footstep Gunshot Motor
Metric FAD ↓
DDSP 5.356 5.213 6.652

DDSP-SFX 1.529 2.004 7.150
Metric Log Spectral Distance ↓
DDSP 0.114 0.585 0.177

DDSP-SFX 0.103 0.446 0.182
Metric Multi-scale STFT ↓
DDSP 1.63 ± 0.43 2.23 ± 0.72 1.09 ± 0.06

DDSP-SFX 1.55 ± 0.44 2.03 ± 0.81 1.10 ± 0.07

Referring to Table 1, our objective measures correlate well,
suggesting a significant improvement in impulsive sounds (foot-
steps and gunshots) after we integrated our transient modelling
method. For motor sounds that are steadily pitched across the en-
tire signal, our method performs slightly worse than DDSP. This
is expected because introducing the regularization term to the loss
poses more challenges to the reconstruction. We also show that
our transient modelling method can synthesize sharper attacks for
impulsive signals in our accompanying website 2.

4.2. Audio quality

Figure 3: User-rated audio quality of sound effects.
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2https://reinliu.github.io/DDSP-SFX/
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(a) Reference voice (b) z = 0 (c) z = 1 after 2s.

Figure 4: An example of how changing z affects the overall timbre. We use a reference voice mimicking motor sound as guidance. In
figure 4b, we show what the spectrum looks like when z = 0 for all the time frames. In figure 4c, we show that the spectrum changes
accordingly when we variate z after 2 seconds. It shows that our latent variable is able to control timbre variation in the time domain.

There were 26 participants (M/F: 19/7; ages: 23-53; audio
experts/non-experts: 14/12) in our subjective listening test. Each
participant was requested to use a pair of headphones for the lis-
tening tests. Each question contains a reference sound (the ones
we randomly selected from the dataset), a sound generated from
DDSP and a sound generated from ours. The reference tracks are
expected to receive the highest scores (4-5). Therefore, we re-
moved two outliers that rated the reference tracks below 2 for over
50% of the questions, resulting in 24 effective participants. Fig. 3
shows a bar plot of the collected mean opinion scores for the sound
quality with variance as error bars. Our subjective test results are
similar to our objective measures, where we see significant im-
provements for the impulsive sounds. The footsteps generated by
DDSP were rated lower than our method, as many participants no-
ticed the harmonic artifacts. Further, the motor sounds were rated
similarly among the two methods.

4.3. Timbre encoding

Table 2: Percentage of sounds rated as different from reference.

z Motors Gunshots Footsteps
0.1 0.255 0.235 0.216
0.5 0.451 0.431 0.510
1 0.549 0.608 0.745
2 0.686 0.804 0.843
3 0.941 0.826 /

There were 19 participants (M/F: 11/8; Age: 23-53; Audio
experts/non-experts: 9/10) in our second listening subjective test.
Table 2 shows the percentage of the participants who rated the syn-
thesized sounds as different from the reference sounds when we
vary the value of z. Our subjective test results indicate that most
participants recorded timbre differences for z > 1. This follows
reasonably because the encoder learns to encode the "most typical"
timbres across the data set within one standard deviation. Larger
values of z indicate a rarer timbre across the whole data set. De-
pending on the variations available within the dataset itself, the
value of z for which users start to tell the timbre differences will
likely change accordingly. Lastly, to demonstrate the effectiveness
of our timbre encoding, we show how varying z temporally could
contribute to timbre variations in Figure 4. For more examples,
please refer to our supplement website.

5. DISCUSSION

In this paper, we integrated DDSP with a transient model and show
that it improves the synthesis result for impulsive sound effects.
We propose a simple method that achieves timbre variation of the
generated sound effect while also enabling deterministic attribute
transfer given a limited dataset. We further demonstrate the out-
of-domain timbre transfer capability by using human vocalization
as guiding sounds. We hope our method will contribute to creative
sound design by allowing users to create realistic sound effects us-
ing their own voices as guiding sounds. Future work may include
training our model on a larger audio dataset with more variations
to enable more expressive timbre control.
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