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ABSTRACT

In this paper we propose a method that can address a novel
task, audio effect (AFX) chain estimation and dry signal recov-
ery. AFXs are indispensable in modern sound design workflows.
Sound engineers often cascade different AFXs (as an AFX chain)
to achieve their desired soundscapes. Given a multi-AFX-applied
solo instrument performance (wet signal), our method can auto-
matically estimate the applied AFX chain and recover its unpro-
cessed dry signal, while previous research only addresses one of
them. The estimated chain is useful for novice engineers in learn-
ing practical usages of AFXs, and the recovered signal can be
reused with a different AFX chain. To solve this task, we first de-
velop a deep neural network model that estimates the last-applied
AFX and undoes its AFX at a time. We then iteratively apply the
same model to estimate the AFX chain and eventually recover the
dry signal from the wet signal. Our experiments on guitar phrase
recordings with various AFX chains demonstrate the validity of
our method for both the AFX-chain estimation and dry signal re-
covery. We also confirm that the input wet signal can be repro-
duced by applying the estimated AFX chain to the recovered dry
signal.

1. INTRODUCTION

Audio effects (AFXs) have played an essential role in modern mu-
sic composition, live performance, and recording scenes [1]. Each
type of AFXs (e.g., reverb, distortion) possesses unique proper-
ties [2], and sound engineers utilize these properties to create de-
sired soundscapes by adjusting their control parameters. In prac-
tical sound design, it is common to sequentially apply multiple
AFXs to certain musical audio signals [3]. This sequence of AFXs
is referred to as the audio effect chain (AFX chain), defined by
the selection of AFXs, their control parameter values, and the or-
der in which AFXs are applied. Figure 1 illustrates the process
of applying an AFX chain to an unprocessed musical signal (dry
signal). Sound engineers focus on designing AFX chains to en-
sure that musical signals (wet signals) blend well with captivating
songs or performances. They often draw inspiration from sonic
characteristics of musical signals in existing tracks for their own
sound design. Research about musical-synthesizer sound match-
ing [4, 5] and AFX-chain recommendation [6] aim at supporting
these styles of sound design.
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Figure 1: In the common sound-design process, sound engineers
design a (target) AFX chain and apply each AFX to the source
(dry) signal with the designed order, from left to right as depicted
in the upper figure. The lower figure illustrates our task of AFX-
chain estimation and dry signal recovery, taking the multi-AFX-
applied (wet) signal as the input to estimate the applied AFX chain
and recover the dry signal.

In general, it is easy to apply an AFX chain to a dry signal
as engineers usually do, but it is not easy to recover the dry sig-
nal from an existing AFX-applied wet signal by undoing its AFX
chain because it is a kind of “reverse-engineering” process. If we
could achieve this inverse process by automatically estimating the
applied AFX chain, it could be useful in streamlining sound de-
sign processes and providing support for novice sound engineers
in understanding the practical use of various AFXs.

We therefore introduce a novel task “AFX-chain estimation
and dry signal recovery” and propose a method to solve it. This
task first takes a multi-AFX-applied musical audio signal (wet sig-
nal) as input. It then estimates the applied AFX-chain configura-
tion (types, control parameters, and the order) from the wet signal
and recovers the dry signal, as illustrated in Figure 1. To the best
of our knowledge, previous research has focused solely on either
AFX-chain estimation or dry signal recovery, without addressing
their combined task. The key idea of our proposed method is to it-
eratively apply the “inverse process” of the single “universal” AFX
application. Each iteration undoes the last-applied AFX and es-
timates its type and parameters. If three AFXs are applied, for
example, we could repeat its inverse process three times to even-
tually estimate the whole AFX chain and recover the dry signal.
In its repetition, we also challenge to estimate the number of the
applied AFXs, given the wet signal only.

We conducted experiments on our proposed method for AFX-
chain estimation and dry signal recovery, targeting guitar phrase
recordings where sound design with multiple AFXs is frequently
employed. We also conducted an ablation study to confirm that
key elements of our proposed method are effective. We finally
investigated whether the input wet signal could be reproduced by
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applying the estimated AFX chain to the recovered dry signals,
demonstrating the potential of our method as a useful sound-design
tool. Sound examples are available1.

2. RELATED WORK

2.1. Deep-learning-based Audio Effect Manipulation

Deep neural networks (DNNs) have been widely utilized for ma-
nipulating AFXs because they are highly expressive and flexible
compared to rule-based methods. For example, DNNs can emulate
existing AFXs with black-box data-driven approaches [7, 8, 9]. In
automatic mixing [10] and music-mixing style transfer [11], AFXs
are incorporated into DNNs as differentiable modules to improve
the performance and make the inference interpretable for humans.
We also take the advantage of DNNs to model the single AFX in-
version process in a black-box data-driven way, but the overall ar-
chitecture of repeating its process in a cascading manner is a white
box, as we dare not take an untransparent end-to-end approach.

2.2. Audio Effect Chain Estimation

The estimation of AFXs (types and control parameters) using
DNNs has been investigated for single [12] and multiple [13,
14, 15, 16] AFX settings. For multi-AFX-applied wet signals,
the estimation of AFX-chain configuration with the fixed types
of AFXs and the fixed order was investigated [13]. For scenar-
ios involving varying numbers of AFXs in the target chain, some
research addresses the estimation of AFX categories used in the
AFX chain [14, 15]. Moreover, graph neural networks are em-
ployed to estimate the configuration of complex AFX-processing
graphs [16]. These graphs encompass not only chain cascades but
also parallel processing and audio busses. However, these meth-
ods do not recover the dry signal by undoing the applied multiple
AFXs. They thus have the limitation of not being able to apply the
estimated AFX chain to the dry signal to reproduce the wet sig-
nal. This limitation does not allow sound engineers to redesign the
given wet signal (i.e., obtain a different sound) by changing some
parameters of the estimated AFXs. Our method has the advantage
of not having this limitation and enables such redesign.

2.3. Dry Signal Recovery

Conventional methods of dry signal recovery were based on signal-
processing manipulations, aiming to undo only the one specific
AFX such as reverb [17] and dynamic range compression [18]. Re-
cent DNN-based methods have also tackled the inversion process
of a single specific AFX such as distortion [19], limiter [20], and
reverb [21]. To recover the dry signal from a multi-AFX-applied
signal, a compositional method that detects all AFXs applied and
evokes each AFX-wise removal network was proposed [22]. How-
ever, since these methods do not estimate the AFX control param-
eters, they cannot reuse the recovered dry signal to reproduce the
wet signal and redesign it as exemplified in the last two sentences
of Section 2.2. Furthermore, the above compositional method [22]
does not estimate the order of AFXs, which can deteriorate the per-
formance in recovery due to non-linear, time-varying AFXs. Our
method does not have such drawbacks.

1https://sarulab-speech.github.io/
afxchest-dryrec

3. AUDIO EFFECT CHAIN ESTIMATION AND DRY
SIGNAL RECOVERY

3.1. Task Formulation

First we formulate the process of applying a single AFX to the
input dry signal to obtain the wet signal as follows:

y = fc,pc(x), (1)

where the dry signal x ∈ R2×T and the wet signal y ∈ R2×T

are both stereo signals (2 channels) with a fixed sample length
T . The function f represents the application of the AFX, and its
form is determined by the AFX type denoted by a discrete label
c and its corresponding control parameter values pc. The tuple
of these two variables (c,pc) represents the configuration of the
AFX. The AFX type c is chosen from a predefined set C (e.g.,
C = {compressor,EQ, · · · }), meaning that the set of realizations
for c is predetermined and finite. The number of control parame-
ters, i.e., the dimension of pc, varies for each AFX type c, and all
control parameters are assumed to have continuous values.

An AFX chain can be represented as a composite function FΛ

that applies multiple AFXs sequentially:

y = FΛ(x) = f
cn,p

(n)
cn
◦ · · · f

c2,p
(2)
c2

◦ f
c1,p

(1)
c1

(x), (2)

Λ = ((ci,p
(i)
ci ))

n
i=1, (3)

where n denotes the length of the AFX chain, indicating the total
number of AFXs applied to the dry signal. The sequence Λ rep-
resents the whole configuration of an AFX chain, determined by
the number of AFXs n, their types ci, control parameters p(i)

ci , and
their order. The superscript i in p

(i)
ci represents that it is the control

parameter values of i-th applied AFX in Λ, and the subscript ci
represents the AFX type only, not including the information about
the order of AFXs.

Our task takes a wet signal y as input, and then estimates the
applied AFX-chain configuration Λ and recovers the AFX-chain-
unprocessed dry signal x. We denote the estimates of these two
outputs as Λ̂ and x̂. We can regard this task as the AFX chain
inverse modeling, which aims to obtain functions Hchain and Hsig

that can approximate F−1
Λ :

x = F−1
Λ (y) = f−1

c1,p
(1)
c1

◦ · · · f−1

c2,p
(2)
c2

◦ f−1

cn,p
(n)
cn

(y), (4)

Λ̂(= ((ĉi, p̂
(i)
ĉi
))n̂i=1) = Hchain(y), x̂ = Hsig(y). (5)

Here, ĉi, p̂
(i)
ĉi
, and n̂ denote the estimates of the AFX-chain con-

figuration, corresponding to variables in Eq. (3). This task thus
requires that the length of AFX chain, n̂, be estimated as well.

Note that the inverse of AFX f−1 does not always exist in
Eq. (4). For example, if an AFX f is a kind of non-injective map-
pings such as hard-clipping distortion or noise gate [2], its inverse
function does not exist. From the viewpoint of information loss,
this means that it is impossible to recover their dry signals from
the wet signals only. We therefore utilize DNNs for this task, ex-
pecting their data-driven approach to capture a plausible mapping
from the output to the input for such non-injective AFXs.

3.2. Proposed Method

Figure 2 illustrates the overall architecture of our proposed method
for AFX-chain estimation and dry signal recovery. This method

DAFx.2

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

2

https://sarulab-speech.github.io/afxchest-dryrec
https://sarulab-speech.github.io/afxchest-dryrec


Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

SunAFXiNetSunAFXiNet
Recovered dry signal

Estimated AFX 1Estimated AFX 2
Est. AFX 2Est. AFX 1

Estimated AFX chain

AFX chain estimation & Dry signal recovery
Input wet signal Single universal 

AFX inversion 
network

(SunAFXiNet)Recovered signal
(AFX removed)

Est. AFX

Output

Target signal
(last AFX bypassed)

Tgt. AFX

Cross Entropy

MSE Loss

MAE loss + Multi-resolution 
STFT(MR-STFT) loss

AFX type
Control 
parameters

Input

Wet signal

Figure 2: Overview of our proposed method for AFX-chain estimation and dry signal recovery task. The method illustrated in the left figure
applies the “inverse process” of AFX-chain processing to the existing musical (wet) signal. It repeatedly applies the single DNN model
(SunAFXiNet, detailed in the right figure) to construct the estimated AFX chain from right to left.

does not determine Hchain and Hsig in an end-to-end manner.
Instead, starting from the wet signal y as input, this method ap-
plies an identical DNN model iteratively to obtain the entire AFX-
chain estimate Λ̂ and the recovered dry signal x̂. We also propose
this identical DNN model named as SunAFXiNet2. With input
as the signal u ∈ R2×T , SunAFXiNet estimates the configura-
tion (d, qd) of the last-applied AFX to u and outputs the signal
ŝ ∈ R2×T approximating the signal bypassing (undoing) the es-
timated AFX from u. SunAFXiNet consists of an AFX estima-
tion block hafx and a dry signal recovery block hsig, named re-
spectively as AFX config estimator and bypassed signal estimator.
Each block works as follows:

(d̂, q̂d̂) = hafx(u), (6)

ŝ = hsig(u, (d̂, q̂d̂)). (7)

Here, we do not prepare an individual bypassed signal estimator
for each AFX type. Instead, we train our bypassed signal estimator
hsig as the universal inverse model that can cover all types of single
AFX f , supporting an arbitrary configuration (type d̂ and control
parameters q̂d̂) estimated by the AFX config estimator hafx.

The procedure of the iterative SunAFXiNet application is de-
scribed as pseudo-code in Algorithm 1. We iteratively apply hafx

and hsig to the wet signal y (in the initial iteration) or the output
signal ŝ (in subsequent iterations) to reconstruct the entire AFX
chain Λ̂ backwards. Since this output signal ŝ after each iteration
is the bypassed signal, we can also undo the entire AFX chain and
obtain the final dry signal x̂ after all the iterations.

The remaining problem is to estimate the AFX-chain length
n that corresponds to the number of iterations. Algorithm 1 also
depicts the procedure for stopping the iterative process. Here, we
simply stop if the difference M(ŝ,u) between the input u and
output ŝ of SunAFXiNet is smaller than a certain threshold. If
no AFX was applied to the input, SunAFXiNet cannot undo any-
thing, and the output will be almost the same, resulting in a small
M(ŝ,u). Therefore, the number of iterations until just before this
stop will be the length n̂ for the estimated configuration Λ̂.

We take this iterative approach since we expect it to have bet-
ter training efficiency and performance compared to an approach
that estimates the AFX-chain configuration all at once. This ex-
pectation is in line with the literature [22] that deals with the task
focusing solely on the dry signal recovery and reported that higher
performance was achieved by removing one estimated AFX at a
time rather than removing multiple AFXs simultaneously. Fur-
thermore, in terms of practical applications, it is noteworthy that

2Abbreviation of “Single universal AFX inversion Network.”

Algorithm 1 The procedure of our proposed method for AFX-
chain estimation and dry signal recovery.

1: Λ̂← [ ], X̂ ← [y], n̂← 0
2: u← y: the input wet signal
3: flag← true
4: while flag do
5: (d̂, q̂d̂) = hafx(u), ŝ = hsig(u, (d̂, q̂d̂))
6: if the stop criterionM(ŝ,u) is smaller than the threshold

then
7: flag← false
8: else
9: Λ̂.append((d̂, q̂d̂)), X̂.append(ŝ)

10: u← ŝ
11: n̂← n̂+ 1
12: end if
13: end while
14: Reverse the order of Λ̂
15: Recovered dry signal x̂← X̂[−1]

the proposed method can provide not only the final dry signal x̂,
but also the intermediate bypassed signals X̂ obtained after each
iteration. This paves the way for a new approach to interactive and
innovative sound design, making it easier to reuse and reconstruct
AFX chains from existing AFX-applied audio signals. For exam-
ple, sound engineers can try different configurations of subsequent
AFXs or different lengths n of the AFX chain on any intermediate
bypassed signal in a trial and error manner, or apply the estimated
AFX chain to any other sound.

3.3. Single Universal Audio Effect Inversion Network
(SunAFXiNet)

Figure 3 depicts the overview of SunAFXiNet used in our pro-
posed method. The bypassed signal estimator hsig utilizes and
extends Hybrid Transformer Demucs (HTDemucs) [23]. HTDe-
mucs is a model that extends the wave-to-wave encoder-decoder
model [24, 25], which has demonstrated high performance in mu-
sic source separation, by incorporating a Transformer encoder in
the bottleneck. We employ this model in dry signal recovery, as
presented in related work [9, 19, 22]. Our extension adds an AFX-
injected cross domain Transformer encoder (AFXCDT), depicted
in Figure 3b, after the cross domain Transformer encoder (CDT)
existing in the bottleneck of HTDemucs. AFXCDT is designed to
condition the original CDT by leveraging the configuration of the
estimated AFX.

DAFx.3

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

3



Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

Spectrogram
Encoder

Waveform
Encoder

Cross Domain 
Transformer Encoder (CDT)

AFX type
(one-hot)AFX-injected Cross Domain 

Transformer Encoder (AFXCDT)

Spectrogram
Decoder

Waveform
Decoder

ISTFT

STFT

AFX Config
Estimator

AFX

Recovered signal
(Estimated AFX removed)

Bypassed Signal Estimator

Wet signal

(a) Overall architecture

Spectral
latent variables

Waveform
latent variables

Concat Concat

1x1 Conv
(Resample)

1x1 Conv
(Resample)

Cross Domain
Transformer Encoder

AFX type
(one-hot)

(b) Detailed structure of AFX-injected cross domain Transformer encoder
(AFXCDT)

Figure 3: Architecture of single universal AFX inversion network
(SunAFXiNet) based on Hybrid Transformer Demucs [23].

3.3.1. AFX Config Estimator

The AFX config estimator hafx in Figure 3a takes the latent rep-
resentation output by CDT as input to estimate the configuration
(d̂, q̂d̂) of the AFX last-applied to the wet signal u. The AFX con-
fig estimator not only estimates the control parameter values q̂d̂

corresponding to the estimated type of AFX d̂, but also outputs the
control parameter values qc for all possible types of AFX c ∈ C,
assuming each type is applied last. This enables the AFX config
estimator to compare the target values qd with the corresponding
estimated values q̂d, even if the type d̂ estimated by the AFX con-
fig estimator is incorrect (i.e., differs from the target type d).

3.3.2. AFXCDT and One-hot Vector of AFX Type

In AFXCDT, a one-hot vector representing the estimated AFX
type d̂ is then concatenated with the latent representation obtained
from the CDT. Since d̂ is represented as the probability distribution
P : C → [0, 1], it is transformed into the one-hot vector in which
the AFX type with the highest probability is 1 and the others are 0.
After the concatenation, AFXCDT passes the concatenated values
to another internal CDT as shown in Figure 3b.

Here, we dared not concatenate the AFX control parameter
values because we observed a sharp decline in the performance of
dry signal recovery when conditioning on the AFX control param-
eter values in a preliminary experiment.

3.3.3. Training process of SunAFXiNet

We divide the training of SunAFXiNet into two separate stages. In
the first stage, we train the bypassed signal estimator hsig solely,
without estimating the AFX configuration. During this stage, we
condition hsig using the ground-truth target type d of the last-
applied AFX. Then, the second stage freezes the model parame-
ters of hsig and trains the AFX config estimator exclusively. This
training scheme enables the SunAFXiNet to avoid unstable train-
ing, which was observed in a preliminary experiment in which the
entire model was trained at once.

The details of the SunAFXiNet model architecture and train-
ing scheme used in experiments are described in Section 4.1.

4. EXPERIMENTAL EVALUATION

We evaluated our method on guitar phrase recordings since they
are typical musical audio signals in which AFXs play an impor-
tant role. We also conducted an ablation study of disabling CDT
and AFXCDT in the SunAFXiNet model to understand their ef-
fectiveness.

4.1. Experimental Setup

4.1.1. Dataset

We collected GuitarSet [26], IDMT-SMT-Guitar [27], and guitar
tracks in Slakh2100 [28] as raw guitar recordings to construct the
dataset. We resampled all the raw recordings (stereo audio signals)
at a sampling frequency of 48 kHz and trimmed silences longer
than one second on the basis of the predetermined volume thresh-
old. Then, from each recording, a random 10-second segment was
taken as the source signal, resulting in 5975 source signals.

We selected four commonly-used AFXs in guitar sound design
as the possible set C of AFXs for the target AFX chain:

C = {distortion,delay,chorus,reverb}. (8)

All of these AFXs sourced from the built-in plugins in
pedalboard [29], a Python audio-processing library. For each
AFX, we manually determined one to five representative control
parameters and their ranges of values, considering practical use.
All control parameters were randomly set within these ranges. We
finally generated

∑4
k=1 4Pk = 64 possible AFX chains in which

each of the four AFX types appears at most once, considering its
order.

We applied each of the 64 generated AFX chains to each
of the 5975 source signals to generate 382400 wet signals. For
each source signal, we used different random control parameters.
We then prepared 382400 dataset entries for training and testing
SunAFXiNet. Since we are interested in the last-applied AFX
only, each dataset entry consists of the wet signal u as input, the
configuration (d, qd) of the last-applied AFX, and the signal s be-
fore its AFX as output. Some data entries from the same source
signal were prepared by sharing some AFXs as depicted in Fig-
ure 4. We normalized all control parameters within the range of
[0, 1]. We did not normalize musical audio signals because their
amplitudes matter for modeling AFXs. To avoid information loss
due to clipping, all musical signals were stored in 32-bit float PCM
format.

We split the 382400 dataset entries into train/valid/test
sets (287424/58368/36608 entries corresponding to 4491/572/912
source signals) with no overlap in instruments of source signals.
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Figure 4: Dataset entry examples for SunAFXiNet training. Each
blue line illustrates the input-output data for each entry. As a
result, a source signal yielded 64 entries from 64 different AFX
chains. This figure illustrates four entries, the first entry from the
chain of delay only, the second entry from the chain of delay and
distortion, the third entry from the chain of delay, distortion, and
chorus, and the fourth entry from the chain of all the four AFXs.

4.1.2. Model Configurations

In this experiment, we adopt the training and hyperparameter set-
tings from previous research [23] to train the HTDemucs-based
SunAFXiNet model. We used a window length of 8192 samples
for the STFT applied to the input of the spectrogram encoder in the
bypassed signal estimator. The output channel of the first layer of
the waveform/spectrogram encoder was set to 32. All encoders and
decoders were configured with 6 layers each. CDT and AFXCDT
were constructed with 3 and 2 cross-domain Transformer layers,
respectively.

The AFX config estimator was constructed with 3 layers of
convolutional blocks and 3 layers of fully connected blocks. The
convolutional block consisted of a one-dimensional convolutional
layer along the time axis (kernel size 4, stride 2), followed by one-
dimensional batch normalization and ReLU. For the output of the
final layer, the mean and maximum along the time axis were com-
puted, and their sum was passed as input to the subsequent fully
connected block. The fully connected block was separately con-
figured for estimating the AFX type d and control parameter val-
ues qd. The fully connected block consisted of fully connected
layers followed by batch normalization and ReLU. All fully con-
nected layers in the AFX config estimator was set to have 512
hidden dimensions. Additionally, a dropout with probabilities of
0.2 and 0.05 was applied during training to the fully connected
blocks responsible for estimating the AFX type and control pa-
rameter values, respectively. We called this SunAFXiNet model
as “Proposed” below.

Models for ablation study. We prepared two other models,
“noAFXCDT” and “noCDT”, for the ablation study to investigate
the functionality of CDT and AFXCDT. The noAFXCDT model
did not include AFXCDT, and instead, CDT was composed of 5
layers of Transformer layers. With this model, we can confirm
whether the AFXCDT is effective. In noCDT, CDT and AFXCDT
were composed of 0 and 5 layers of Transformer layers, respec-
tively. This setup allows us to investigate performance changes
due to the presence of Transformer layers in CDT. In Proposed
and noAFXCDT, the input to the AFX config estimator is the out-
put of CDT, while in noCDT, the input is the concatenation of the
encoder outputs.

Training configurations. The first and second stages of train-
ing SunAFXiNet used the objectives L1 and L2, respectively:

L1 = LMAE(ŝ(u, d), s) + 0.05Lmrstft(ŝ(u, d), s), (9)

L2 = Lce(d̂(u), d) + LMSE(q̂d(u), qd), (10)

where LMAE,Lmrstft,Lce, and LMSE denote the mean average

Table 1: Results of AFX-bypassed signal s recovery.
Model SI-SDR (↑) MR-STFT (↓)

Wet u 10.57 dB 2.32
Proposed 13.63dB 0.68
noCDT 13.30 dB 0.69
noAFXCDT 9.74 dB 1.06

Table 2: Results of AFX configuration estimation.

Model AFX Acc.(↑) Param.
MSE(↓)

Proposed 0.695 0.034
noCDT 0.724 0.030
noAFXCDT 0.728 0.038

error (MAE), multi-resolution STFT loss [30], cross-entropy loss,
and the mean squared error (MSE), respectively. We used the
auraloss [31] implementation to compute Lmrstft. The coeffi-
cient value 0.05 before Lmrstft was determined by our preliminary
experiment. During the training of SunAFXiNet, we set the batch
size to 32 and the learning rate to 5×10−5. The number of epochs
for the first and second stages were 400 and 150, respectively.

4.2. Evaluation Scheme and Metrics

The evaluation includes three parts. We first evaluated the per-
formance of SunAFXiNet itself (Section 4.3) to confirm that the
SunAFXiNet successfully estimates the last-applied AFX and un-
does it to obtain the bypassed signal. The bypassed signal recovery
was assessed by the scale-invariant SDR (SI-SDR) [32] and multi-
resolution STFT loss (MR-STFT) between the target s and its es-
timate ŝ. The evaluation metrics for the AFX estimation were the
accuracy of AFX type estimation (AFX Acc.) as well as the MSE
of the normalized control parameter values between the target qd

and its estimate q̂d for the target AFX d (Param. MSE).
We then investigated the performance of the dry signal recov-

ery (Section 4.4). Given y, we used the proposed method with the
trained SunAFXiNet to obtain the dry signal estimate x̂ in Eq. (5),
and assessed whether x̂ successfully approximates the target dry
signal x in Eq. (4). The evaluation metrics of this recovery were
SI-SDR and MR-STFT between the target x and its estimate x̂.

Finally we evaluated the reproducibility of the wet signal y
from the estimated AFX-chain configuration Λ̂ and dry signal x̂
(Section 4.5). We re-applied the estimated AFX chain FΛ̂ to the
recovered dry signal x̂, and evaluated if the reproduced wet signal
FΛ̂(x̂) successfully approximates the original input wet signal y.
The evaluation metrics of this wet signal reproduction were SI-
SDR and MR-STFT, same as the dry signal recovery evaluation.

4.3. Evaluation of SunAFXiNet

Table 1 shows the results of the bypassed signal recovery. For the
Proposed and noCDT models, the bypassed signal was recovered
with the AFXCDT conditioned on the ground-truth target AFX
type. For comparison, we added the “Wet” condition without any
SunAFXiNet applied, which evaluates the input wet signal u as it
is, as if it were the recovered signal (i.e., the estimate ŝ = u). The
results showed that for the Proposed and noCDT models, the eval-
uation metrics improved compared to the Wet. Since the noAFX-
CDT model was the worst for SI-SDR, the use of AFXCDT con-
ditioned on the AFX configuration was effective in this recovery.
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Table 3: Results of dry signal x recovery from AFX-chain-
processed wet signal y.

Model SI-SDR(↑) MR-STFT(↓)
Wet y 1.26 dB 5.66
Proposed 5.81dB 2.48
noCDT 5.30 dB 2.53
noAFXCDT 2.09 dB 3.78

Table 2 shows the results of the AFX configuration estimation.
All three models achieved comparable estimation performance,
with a slight decline in the Proposed model performance.

4.4. Dry Signal Recovery from Wet Signal

We evaluated the proposed method with the trained SunAFXiNet
for the performance of recovering the dry signal x from the wet
signal y. For each data entry in the test set, we input the wet signal
y(= u) to the proposed method to estimate the AFX-chain config-
uration Λ̂ and recover the dry signal x̂, which was then compared
to the ground-truth dry signal x instead of s in the data entry. In
this estimation, we ensured that each AFX type appeared at most
once by masking, in the output distribution P of the AFX con-
fig estimator, the values of AFXs that had already appeared in Λ̂
obtained in previous iterations.

For this evaluation, we need to determine the stop criteria (the
threshold for M(ŝ,u)). We therefore analyzed distributions of
the MAE difference ∆MAE between the input and output wave-
forms of SunAFXiNet during its iterative application in the pro-
posed method. The ∆MAE is defined as follows:

∆MAE = LMAE(ŝ,u)/||u||1. (11)

For this analysis, we iteratively applied SunAFXiNet to the wet
signal y(= u) using 58368 data entries in the valid set. We did
not employ any stop criterion but the above-mentioned AFX-type
masking, ensuring that each of the four AFXs in C appeared ex-
actly once. We thus collected 233472 (= 58368 × 4) values of
∆MAE. Each estimated AFX type thus has 58368 difference val-
ues. To determine the threshold, it is necessary to visualize them
so that we can compare the values when the estimated AFX is ac-
tually included in the ground-truth target chain (IN target chain)
with the values when it is not (NOT IN target chain).

Figure 5 displays the violin plots of the distributions so that we
can analyze the values for the above purpose. We show them for
each of the three models, Proposed, noCDT, and noAFXCDT. For
the Proposed and noCDT models, this figure clearly shows that, for
each AFX type, the MAE difference between the input u and the
output ŝ is larger when the AFX is correctly estimated (“IN target
chain” plots shown in the blue color) than when it is not (“NOT
IN target chain” plots shown in the orange color). This allows us
to determine the threshold forM(ŝ,u)(= ∆MAE) as the top 20
percentile of the “NOT IN target chain” distribution, as shown in
the magenta line in Figure 5. Each estimated AFX type d̂ in each
model thus has a different threshold.

Table 3 shows the results of the dry signal recovery. The re-
sults confirmed that the proposed method successfully recovered
the dry signal x, compared to the Wet y condition. Among the
three models, the Proposed model performed best in both SI-SDR
and MR-STFT.

Proposed

noCDT

noAFXCDT

Figure 5: The distributions of the MAE difference ∆MAE between
the input u and the output ŝ of SunAFXiNet. Each magenta line
represents the top 20 percentile of the “NOT IN target chain” dis-
tribution for each AFX.

4.5. Wet Signal Reproduction

We evaluated whether the estimated AFX chain FΛ̂ could repro-
duce the original input wet signal y. We used the following evalu-
ation metrics to assess the reproduction performance:

• SI-SDRi (SI-SDR(y, FΛ̂(·))− SI-SDR(y, ·)),
• MR-STFTi (Lmrstft(y, ·)− Lmrstft(y, FΛ̂(·))).

We evaluated the wet signal reproduced from the recovered dry
signal x̂ as well as the wet signal reproduced from the ground-truth
target dry signal x. Note that if there was no AFX estimated to
apply to the input wet signal y in the proposed method (FΛ̂ = id,
the identity mapping, n̂ = 0), the SI-SDRi and MR-STFTi were
both set to 0.

Table 4 shows the results of the wet signal reproduction. Given
x̂, the Proposed model achieved a positive SI-SDRi value, suggest-
ing successful reproduction of the input wet signal y. Conversely,
when using the noCDT and noAFXCDT models, the SI-SDRi was
negative, indicating failure to reproduce y. When x was used,
all the three models achieved positive SI-SDRi values that were
higher than the values for x̂.

However, in our further investigation, we found that the av-
erage SI-SDR value after application of the estimated AFX-chain,
SI-SDR(y, FΛ̂(x)) (3.49 dB for the Proposed model), was smaller
than the SI-SDR value of the recovered dry signal, SI-SDR(y, x̂)
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Table 4: Results of wet signal reproduction using estimated AFX
chain FΛ̂.

Model SI-SDRi(↑) MR-STFTi(↑)
Reproduced from recovered signal x̂

Proposed 0.67dB 0.58
noCDT −0.59 dB 0.52
noAFXCDT −0.81 dB 0.27

Reproduced from ground-truth signal x
Proposed 2.24dB 0.53
noCDT 1.89 dB 0.52
noAFXCDT 1.41 dB 0.30

(5.25 dB for the Proposed model). For the purpose of re-designing
musical signals using FΛ̂, considering x̂ as the dry signal would
provide a meaningful starting point closer to the desired wet signal
y.

4.6. Discussion

The experimental results above confirm that the proposed method
with the Proposed model enables the estimation of AFX chains,
recovery of dry signals, and reproduction of wet signals. This
contrasts with the outcomes obtained when using the noCDT and
noAFXCDT models. Our ablation study indicates two findings.
First, the proposed structure AFXCDT conditioned by the AFX
type in SunAFXiNet is necessary to realize the valid dry signal re-
covery. Second, it is crucial to process the latent representations
using the Transformer encoder’s complexity both before and after
the AFX config estimator.

Limitations. While previous research has not tackled the
AFX-chain estimation and dry signal recovery jointly, it is worth
comparing the performance of each component (bypassed signal
estimator and AFX config estimator) to previously proposed meth-
ods mentioned in Section 2. Furthermore, researchers can integrate
promising ideas presented in the related work, such as the com-
positional approach [22], graph representation [16], and the auto-
encoder approach [13], into our proposed approach that features
the iterative application of SunAFXiNet as a key concept. These
directions can be explored in future work.

5. APPLICATION TO SOUND DESIGN

With the successful recovery of dry signals and reproduction of
wet signals, sound engineers can utilized the outputs of our pro-
posed method for the new-style sound design referring to existing
musical signals. Here we present two scenarios of sound design
using our proposed method:

• An engineer has a wet guitar recording but does not have
its dry signal, and applies our method to its wet signal. The
method extracts the AFX chain (chorus, distortion) used in
it and the corresponding dry guitar sound. Then the engi-
neer boosts the drive parameter of the distortion to obtain a
harsher distorted-guitar phrase, as illustrated in Figure 6.

• An engineer finds the AFX chain used in a power-chord
guitar recording interesting, and wants to reuse it. The engi-
neer then leverages our method to identify the chain (distor-
tion, chorus, reverb) with the appropriate parameters, and
applies it to another guitar lead recording in a melodic style,
obtaining a distorted guitar-lead with similar sonic charac-
teristics.

Wet signal

Chorus
rate=xxx, …Distortion

drive=16.4 dB

Estimate chain 
& recover signal

Chorus
rate=xxx, …Distortion

drive=25 dB

Re-apply
modified chain

Recovered dry signal

Re-designed signal
Boost
drive

0
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512

2048

8192
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3 6 9

3 6 9
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128
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2048

8192

0

128
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2048

8192

H
z
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Figure 6: An example of the new-style sound design enabled by our
proposed method. Engineers can extract the AFX chain and the
unprocessed dry signal from an existing wet signal, manipulate the
estimated AFX chain, and then re-apply the modified AFX chain to
the recovered dry signal. This process results in a musical signal
with altered sonic characteristics.

6. CONCLUSIONS

We proposed a method that analyzes the wet signal without any
additional information and can estimate the AFX chain used in it
and recover the dry signal. The contributions of this paper can
be summarized as follows. First, we introduced a novel task “au-
dio effect (AFX) chain estimation and dry signal recovery”, which
was not tackled in the literature. Second, we proposed a unique
approach of repeatedly applying an identical DNN model to esti-
mate the last-applied AFX and recover the signal before applying
its AFX until the stop criterion is satisfied. It can thus reconstruct
the entire AFX chain backwards and obtain the intermediate by-
passed signal for each AFX in the chain. Third, we confirmed
the effectiveness of our proposed method by using guitar phrase
recordings with four types of AFXs. We further conducted the ab-
lation study to reveal that the use of the proposed AFXCDT and
several Transformer encoders are important.

Future work will include the extension of our method to handle
more AFX types and different instruments. We also plan to build
and validate a sound design support tool based on our method.
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