Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

GENERAL-PURPOSE GPU AUDIO BENCHMARK FRAMEWORK

Travis Skare *

CCRMA
Stanford University
travissk@ccrma.stanford.edu

ABSTRACT

Acceleration of audio workloads on generally-programmable GPU
(GPGPU) hardware offers potentially high speedup factors, but
also presents challenges in terms of development and deployment.
We can increasingly depend on such hardware being available in
users’ systems, yet few real-time audio products use this resource.

We propose a suite of benchmarks to qualify a GPU as suit-
able for batch or real-time audio processing. This includes both
microbenchmarks and higher-level audio domain benchmarks. We
choose metrics based on application, paying particularly close at-
tention to latency tail distribution. We propose an extension to the
benchmark framework to more accurately simulate the real-world
request pattern and performance requirements when running in a
digital audio workstation. We run these benchmarks on two com-
mon consumer-level platforms: a PC desktop with a recent mid-
range discrete GPU and a Macintosh desktop with unified CPU-
GPU memory architecture.

1. INTRODUCTION

For over fifteen years, commodity graphics cards have contained
generally-programmable unified shader pipelines. GPUs excel at
highly parallel tasks and operate akin to single-instruction, multiple-
data (SIMD) processors. While modern consumer CPUs may have
four to sixteen cores, GPUs may have hundreds or even thousands—
though GPU cores are much simpler, have more limited instruction
sets, operate in clustered groups, and are less suited to applications
with dense if-else branching. For certain highly parallel tasks,
however, code may be written in an approachable C-like language,
and once tuned can reach throughput of ten or one hundred times
greater than a CPU implementation.

Researchers have demonstrated feasibility of faster-than-real-
time audio processing on the GPU. Early work included the mil-
lion sinusoids demo of Savioja et al.[1]. This example processed
successive time-series steps in parallel; later generations of GPUs
were fast enough to process audio sample-by-sample at audio rates.
Despite this, there have been few commercial products leveraging
the GPU, and most of those had their GPU acceleration phased
out. Two examples are earlier versions of LiquidSonics’s Rever-
berate Core (convolution reverb) and Acustica Audio’s Nebula 3
(Volterra kernel-based processor). More recently there is the ac-
tive work of GPU Audio Inc. We suggest possible reasons for the
limited market impact include, but are not limited to:

* Thanks to conference organizers, hosts, and reviewers.
Copyright: © 2024 Travis Skare. This is an open-access article distributed under the
terms of the Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, adaptation, and reproduction in any medium, provided

the original author and source are credited.

< 452

Heterogeneous User Setups: CPU-based plugin developers con-
tend with different processors, vectorization APIs, etc., but may
write to a single framework. On the other hand, there are at least
three major GPGPU programming frameworks, with different op-
timal frameworks per GPU manufacturer. While there are some
established tools that cross-compile such as Adobe Halide[2] or
PyTorch[3], these are more for batch and graph processing respec-
tively and are not as performant as hand-tuned code.

CPU and Input/Output (I/0) Speed Advances: Since the initial
release of NVIDIA’s CUDA' framework, consumer CPUs have
moved from around two cores to eight or more, and increased
single-core performance substantially. Memory and I/O bandwidth
has greatly increased. Modern systems have sufficient CPU power
and headroom for most audio production tasks, though GPU ac-
celeration may enable novel applications.

Greenfield Space: CPU-based plugins are a known quantity.
GPU-based plugins have less documentation, require additional
testing costs, and bring less history in terms of forward- and
backward-compatibility. On the other hand, first movers in the
space may benefit from the GPU being underutilized.

Cross-product communication concerns: Expanding on the
prior point, there are years of history of DAW manufacturers tun-
ing scheduling and thread assignment code for CPU-based effects.
The GPU driver coordinating multiple kernel launches is a new
system to interact with. A new class of problems is introduced
when running multiple GPU-based audio effects from collaborat-
ing or competing vendors; this challenge was touched on in prior
work[4].

Requires operating in two niche domains: Developers must
learn background and best practices in both audio effects process-
ing and GPGPU programming. This increases the “activation en-
ergy” needed to get started. However this is approachable with
many great resources available. The challenge mirrors that of de-
veloping for FPGAs, external hardware, etc.

Toward assuaging some of these concerns, we develop a bench-
mark framework that can be used to qualify a platform as suitable
for GPU-accelerated audio. Such benchmarks may demonstrate
that low-level tasks are tractable on a system with time to spare
for computation, and may be combined to perform relevant syn-
thesis and processing tasks at audio rates. Then, they may be used
to compare different systems and determine the effect of varying
parameters such as sampling rate.

Section 2 formally proposes this benchmark framework, es-
tablishing metrics, tests, and functionality that simulates the ca-
dence of requests and requirements imposed when running inside
a digital audio workstation. Section 3 presents results from run-
ning these tests on two modern consumer-level systems typical of
what hobbyist or professional music producers may use. We note

1Compute Unified Device Architecture, the API and tools enabling run-
ning non-graphics programs on NVIDIA GPUs

https://ccrma.stanford.edu
mailto:travissk@ccrma.stanford.edu
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

trends on each platform and point out where each excels. Section
4 provides instructions for how to obtain and run the framework.

2. PROPOSAL

A proposed set of benchmarks may be used to answer questions
such as:

* Can this system process audio on the GPU at real-time rates?

¢ What is the overhead? What are the bounds on buffer size
and sample rate?

* How many tracks can be processed in real-time? What are
the data transfer limits?

* Does this platform excel at or struggle with certain sub-
tasks? Perhaps one platform has arithmetic throughput but
slow memory access once working set exceeds some limit.

Other work has sought to measure GPGPU performance for
certain systems, often datacenter or deep learning systems. Most
relevant to audio production is the work of Renney et al.[5] who
discuss the feasibility of GPGPU acceleration of real-time audio
tasks in particular. Their work provides microbenchmarks and a
synthesis benchmark for CUDA and OpenCL, an AMD-compatible
API. We note our benchmark suite has overlap with Renney et al.’s
microbenchmark section in terms of measuring kernel execution
times and data transferring tasks, so we may comment on com-
monalities and differences between the two studies. In this work
we introduce multiple new audio domain benchmarks, study an
additional consumer platform with different memory performance,
and work toward simulating the conditions of running in a digital
audio workstation environment.

Gregg et al.[6] discuss benchmarking general GPU-accelerated
tasks. They suggest performance analyses must measure the total
end-to-end performance; reporting GPU code throughput in iso-
lation can misleading as it is only part of the overall task. Pre- or
post-processing portions of the task may take a substantial fraction
of the total wall-clock time and outweigh a hundredfold gain ob-
tained by processing on the GPU. This scenario is an application
of Amdahl’s law?. Gregg et al. also suggest bucketing benchmarks
in terms of input-heavy, output-heavy, and data-light benchmarks,
and suggest noting whether data transfer may be hidden via asyn-
chronous transfers, or whether it is in the critical path. While we do
not use their exact system, and we focus only on audio processing,
we take inspiration to benchmark different mixes of input/output
sizes, noting audio plugin tasks may be grouped as in Table 1.

Table 1: Input/Output Skew Cases

I/O relative sizes
Input « Output
Input ~ Output
Input » Output

Example effect types
Synthesizers
Console emulation, Guitar amp sim
Metering, Analog summing emulation

2 Amdahl’s law [7] states the maximum obtainable speedup for a task
will be limited by the fraction of total time the optimized section takes.
If a task consists of 90% parallelizable section and a 10% serial section,
we will never be able to exceed a ten times speedup even if reducing the
former to zero.

CPU GPU

1. DAW requests processing —_ DAW-Provided
Buffer \

N input channels of S samples

2. CPU to GPU data transfer Input data

3. CPU requests GPU run kernel

Fn(input, loutput); :
1
1

4. GPU kernel completes. v

Output data resides on GPU.
Output data

5. GPU to CPU data transfer

GPU result — |

Postprocessing
(optional)

6. CPU uses data,
copies to to DAW buffer,
control returns to DAW

Figure 1: Steps in a GPU-accelerated plugin process

2.1. GPU-Accelerated Audio Processing

A GPU-accelerated plugin often comprises the following steps,
shown visually in Figure 1.

1. The host DAW sends the plugin a block of IV input channels
of data to process. Example: requests to process N*512
samples arrive every 11 milliseconds.

2. CPU code copies from this block of data into a region of
GPU memory; the CPU is called the host and the GPU is
called the device. This host-to-device transfer is either per-
formed with an explicit API call or implicitly using some
syntactic sugar or a helper class.

3. With the data to be processed residing on the GPU, the CPU
requests the GPU run a kernel of one or more functions.

4. The GPU executes the kernel code either synchronously or
asynchronously. It writes outputs to memory on the device.

5. Control returns to the CPU which performs an explicit or
implicit device-to-host memory transfer.

6. The CPU uses the generated or transformed data. In the
case of a plugin, the data would be copied back to the output
buffers provided by the DAW.

All benchmarks included in the suite at the time of this writing
assume the code under test would be called in such an environ-
ment.

2.2. Metrics

We measure two core metrics: latency and throughput.

Latency is the wall-clock time in milliseconds between when
an audio buffer is requested to be processed and when its results are
available. This is our most important metric: if we miss the dead-
line for processing a single buffer, a recording take or a song may
be ruined. We will report median, 95th percentile, and maximum
audio buffer processing times, and care about tail latencies a great
deal. In cases of excessive latency metrics, developers may add
buffering and leverage the DAW’s latency compensation. Batch
processing tasks are less sensitive to latency, of course. We may
say an audio processing task “meets the latency bar” if it is able
to complete within the time allowed for its audio callback. This

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

is defined as the audio buffer size divided by the sampling rate,
minus some time for overhead.

Throughput measures how much data a system be processed
over time, for example one may compute 500 Megabytes of data
per second for some task A and 1,200 Megabytes per second for
some task B. This is useful in considering how many tracks of
32-bit audio at a target sampling rate we can process, and when
properly measured yields the overall speedup factor over a CPU
process.

These two metrics are directly dependent when scaling param-
eters such as number of tracks and buffer size. Other metrics are
not measured directly but may be obtained via profiling tools. In
particular this suite of benchmarks has a small working set and
small impact on RAM, and memory usage totals are not collected.

2.3. Parameters

The benchmark harness provides tunable parameters for: sampling
rate, audio buffer size, and number of virtual tracks. Default values
for throughput-based benchmarks simulate processing 64 tracks of
ten seconds of 48kHz audio, 512 samples at a time. GPUs excel
at higher levels of parallelism, so users are encouraged to experi-
ment with higher track counts. Some benchmarks have additional
controls. These may extend the aforementioned parameters (e.g.
input/output weight shift for the I/O microbenchmarks) or replace
them (number of modes for the modal synthesizer replaces track
count).

2.4. Structure

The benchmarks run as a console application. This approach mir-
rors some prior projects which successfully used a dedicated utility
process to handle GPU calls. Future work might add the ability to
run benchmark code in-process inside an actual plugin. No third-
party translation layer is used; the benchmarks are rewritten for
each platform. We use shared superclasses when possible to mini-
mize repetition and remove some API calls from the main path of
reading the code.

The inner kernel code is C-like for both Metal and CUDA; de-
bugging and performance tuning per-platform will likely be more
time-consuming than migrating syntax. Benchmarks are divided
into three sections: initialization, kernel execution, and validation.
Some of these sections may be uninteresting in some benchmarks.
Notably, all memory allocations should be performed during ini-
tialization. For dynamic sets of objects (e.g. synthesizer voices),
we preallocate a buffer that can store our maximum number of
voices. This suggestion mirrors best practice for real-time CPU
plugin development. Validation might compare output to a golden
sample, or check that output statistics meet certain criteria. Vali-
dation is recommended to ensure all work was performed, and that
results match a known CPU implementation.

Next, we discuss the suite’s individual benchmarks.

2.5. Benchmarks: Microbenchmarks

Microbenchmarks measure raw capabilities of a system, each con-
centrating on an aspect such as I/O or arithmetic throughput. These
should measure individual sections of a GPU-accelerated audio
processor. These include:

Kernel launch: simply launches an empty “no-op” kernel.
This measures GPU API overhead and provides a lower bound for

454

a system’s feasible audio buffer size (assuming no buffering in the
plugin).

Memory transfer: Transfers data to and from the GPU. This
is repeated for small and large amounts of data. This is also re-
peated for input-output balances (as in Table 1) to see if transfers
are faster in one direction.

Gain / Metering: These tasks perform a small amount of pro-
cessing on a large block of samples: adjusting gain and gathering
some statistics about our audio (mean, max per channel). We map
one virtual audio track to one thread, as this is the most immedi-
ate approach to porting existing code to the GPU. This benchmark
helps analyze single-GPU-thread performance between systems,
rather than total throughput.

2.6. Benchmarks: Macrobenchmarks

This category comprises medium-sized benchmarks which imple-
ment domain-specific tasks such as equalization and synthesis
which may make up part of a full GPU-accelerated product.

IIR Filtering: Enough filtering for a 5-band equalizer per vir-
tual channel; involves a practical number of multiplies and adds.
This is currently implemented as several biquad filters per chan-
nel. Stateful systems require persisting that state across kernel
launches. There are two approaches to this problem: we may re-
serve some space in GPU memory to save and restore the state, or
we may return it back to the CPU alongside the output data and
re-send it to the GPU on the following kernel launch alongside the
input data. As audio plugin developers will take the opportunity
to optimize their end products, we leave such decisions up to the
author of these benchmarks when implementing for a new plat-
form. For the provided CUDA implementation, we round-trip the
small amount of state to and from the CPU rather than storing it
in GPU memory, as the amount of data is much smaller than the
generated audio. This decision would require experimentation for
large amounts of look-back and feedback, however. The Metal im-
plementation uses unified memory, so the state can remain in place
accessible to the CPU and GPU.

Modal Filter Bank: Modal Synthesis[8] determines resonant
modes of a system and sums the output of oscillators or resonant
filters tuned to those modes to model strings, bars, and other vi-
brating objects.

We synthesize N modes; as [N may be high, we suggest the
results are tree-summed down by a factor of 32, so the benchmark
measures processing time rather than data transfer. The state may
be saved on the GPU or sent back and forth at the developer’s
preference.

Here we send audio for the first 64 modes and all state from the
device to the host as output, and re-send state back to the GPU on
next invocation. This puts more of an emphasis on computational
throughput over I/0.

RndMemN: Reads from a block of memory with N virtual
playheads; an example use case is a granular synthesizer. A goal
is to stress or “‘bust” caches which are often limited on the GPU, in-
cur penalties for unaligned and unsynchronized memory accesses
between threads in an execution group, and incur penalties for us-
ing global discrete memory, which based on experience in prior
projects was not directly addressable at audio rates (compared to
registers, thread-level memory, and shared memory).

Convolution: The Convolution benchmark promotes use of
a platform’s specialized read-only memory, which might provide
higher throughput over non-constant memory. This optimization

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

Batch or Process | Process | Process
Benchmark
DAW
Process Process Process
calls » calls » calls »,
DAW-Sim Process Wait Process Wait Process Wait
(Spin/Sleep) (Spin/Sleep) (Spin/Sleep)

Time

Figure 2: Batch vs Real-World vs DAW Simulation

is inspired by Chapter 7 of Programming Massively Parallel Pro-
cessors: A Hands-on Approach, 4e[9]. CUDA/Metal declare read-
only buffers as “constant” and “texture” memory respectively.

2.7. Future benchmarks

Please see the repository (links in Section 4) for additional bench-
marks over time; the Digital Waveguide Mesh[10] in particular is
under development to cover stencil-like memory access patterns.
This synthesis pattern extends the digital waveguide to a multi-
dimensional grid of bidirectional delay units and scattering junc-
tions, and is an efficient method of synthesizing membranes.

2.8. Closer to real-world: DAW Simulation

Meeting latency bars on the micro- and macro- benchmarks is a
necessary but not sufficient step in qualifying a system for GPU
audio acceleration. In the real world, a plugin’s processing func-
tion is called by a DAW or driver many times a second and must
service each request before some deadline. Giving the benchmarks
access to all data at once is similar to batch processing, specifically
benchmarking a DAW’s offline “bounce” command. This is a valid
user flow, but not the common real-time processing case.

Choosing p95/maximum latency as a core metric addresses
this somewhat, but we still miss phenomena such as the OS sched-
uler treating a bursty high-CPU batch task differently than a long-
running periodic processing task.

Batch-benchmarking also experiences contention with other
resources differently. The GPU may (or may not) compete with
GUI rendering for the OS, DAW, or web browser on the system.
Our longer-lived, lower-GPU-usage tasks might have caches on
the GPU cleared more frequently, the usage pattern may influence
the GPU driver/scheduler as well.

To mitigate this, we introduce a DAW Simulation, or “DAW-
sim” for short, benchmark mode that invokes the code under test
at regular intervals. The basic concept is demonstrated in Fig-
ure 2°. To implement this functionality, we must have our pro-
cessing thread wait for the next audio buffer and have a choice of
sleeping vs. spinning on the benchmark thread. Sleeping involves
requesting the operating system pause execution of a thread until
it is needed or for a certain time period. Spinning involves actively

3Note in this figure that the real-world DAW calls may have varying
inter-arrival time due to other plugins; our benchmark implementation re-
sults in periodic and regular calls

455

waiting inside a loop: while (!wait_time_elapsed) {}.
This keeps the audio thread awake but costs system resources.
Sleeping was measured to have a more significant impact on bench-
mark runtime; we do not have a deep knowledge of DAW internals
but using Windows tracing tools while two mainstream DAWs*
processed audio suggests sleep system calls were not used for the
audio thread; general practice suggests avoiding sleeping on the
audio thread as well. We note that in a real DAW environment,
other plugins in the same chain will actively spend cycles, po-
tentially making spinning more accurate for dense audio projects.
Finally, we note that different operating systems may have soft-
realtime capabilities and specialized threading calls such as Ma-
cOS’s Audio Workgroups on version 11 and above; this is an area
for future exploration. We choose a spin approach. In practice, the
DAW has control over, and a massive influence on, scheduling and
threading behavior.

3. RESULTS

We present detailed results for microbenchmarks and three domain-
specific benchmarks as mentioned in Sections 2.5 and 2.6 to com-
pare two modern consumer-level platforms for GPGPU audio ac-
celeration. 32-bit floating point samples are used on both plat-
forms.

The two systems under test are described in Table 2. A Win-
dows PC with discrete NVIDIA RTX 4070 is given shorthand
label PC and an Apple Mac Mini M2 with integrated GPU is
given label AS. We note MacOS laptops and desktops produced
since late 2020 use ARM-based “Apple Silicon” system-on-chip
cores (SoCs) with integrated GPUs and memory shared between
the CPU and GPU. The differences between a system with a dis-
crete graphics card with dedicated memory versus the M1-M3 chips
is illustrated in Figure 3.

3.1. Kernel startup time

The most minimal benchmark measures overhead of launching and
running a kernel. A histogram of bare-bones kernel launch times
by platform is in Figure 4. For this case only we include a third
platform, an older Inte] MacOS desktop with an AMD RX 5700XT
GPU. This is a discontinued platform, but similar to those which
may be in production environments for years to come. From this

4Cockos REAPER and PreSonus Studio One

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

Table 2: Test platforms, Windows PC with RTX 4070 (PC) and MacOS with integrated M2 GPU (AS)

Platform Shorthand CPU RAM GPU VRAM
PC Intel 17-12700 32GB Discrete | NVIDIA RTX 4070 | 12GB Discrete
AS Apple M2 Pro (Mac Mini 10 Core) | 16GB Unified M2 16-Core 16GB Unified

Discrete Components S0C Package
PCle
Bus
CPU |« > GcpPU P -
CPU Internal v GPU
Interconnect
A F %
v v r N r 3
A\ 4 v
DDR GDDR LPDDR5
SDRAM SDRAM SDRAM (Shared)

Figure 3: Common Discrete vs. Unified Memory Architectures

point we concentrate on a comparison between the two more mod-
ern platforms, but the benchmark code does build and run on Intel
Macs for developers wishing to support that platform.

Median and 95th percentile latency for each platform is listed
in Table 3. We see CUDA has very low kernel launch latencies;
Metal’s are higher but still fractions of a millisecond.

Kernel Execution Latency

RX 5700XT (MacOS-Metal Intel+AMD)
RTX 4070 (Windows-CUDA Intel+NVidia)

400 M2 (MacOS-Metal Apple Silicon)
300
€
E]
]
Q
200
100
0 ||I|l|-._...
0.00 0.05 010 015 0.20 025 0.30

Latency (ms)

Figure 4: Histogram of Kernel Launch Times by Platform

Table 3: Kernel Launch Time by platform, milliseconds

Platform Median p95
5700XT (Metal/AMD) 0.11 0.17
4070 (CUDA) 0.01 0.03
M2 (Metal/Apple) 0.13 0.17

3.2. Data transfer time

Transferring audio data to and from the GPU for processing is a
system-dependent overhead cost. Table 5 shows measurements for
scenarios where inputs may be much smaller, similar in size to, or

< 456

much larger than outputs. We compare outputs for PC and Apple
Silicon platforms. For the first four columns, we assume a DAW
sends us an input buffer, which we must copy to the GPU, process,
and copy back from the GPU to the DAW’s provided buffer. The
Apple Silicon platform uses shared memory and, if we may pro-
cess this data in-place, we may avoid these copies. The last two
ASunifiea columns of the table show avoiding these copies re-
duces tail latencies by 90% or more in this benchmark, suggesting
the unified memory architecture may have more time available for
arithmetic computation, or can support higher amounts of data.

3.3. Arithmetic: Modal Filter Bank

We synthesize a modal filter bank of up to one million modes us-
ing phasor filters[11]. The inner loop is a complex multiplication-
based update, stressing the arithmetic units of the GPU. Results
are presented in Table 4. We see the discrete GPU has higher arith-
metic throughput, as expected for the difference in TDP® between
the platforms.

Table 4: Transfer+Kernel execution time (ms) to Synthesize Modes
to 512-sample buffer, median and 95th percentiles.

Modes Pcp5o Pcp95 ASpso ASpg5
1,000 0.050 0.183 0.172 0.203
100,000 0.315 0.447 0.611 0.671
1,000,000 | 3.168 3.941 5.717 5.87

3.4. Random Memory Access (RndMemN)

In this trial we simulate a sample-based instrument or a virtual
granular synthesizer operating on a large sound buffer. As shown
in Figure 5, this can present a challenging case for rapid mem-
ory access; if we allow threads to have different loop lengths and
start positions, virtual playheads’ reads from the buffer will not
be aligned and performance will be degraded. We default to a
128MiB virtual buffer® for this trial.

5Thermal Design Power, a measurement that scales with maximum
power consumption

61 mebibyte (MiB) = 220 = 1,048,576 bytes; compare with 1 megabyte
(MB) = 1,000,000 bytes

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

Table 5: 100MiB Data transfer times between CPU and GPU: total latency, in milliseconds, 50th and 95th percentiles, for different mixes
of input and output sizes. Time measured includes copying to/from audio buffers as a DAW would provide for first four columns. ASunified
variants exclude these copies for cases where unified memory can be utilized.

Cache (transparent)

ﬁ/ \/ \i

— i

Global GPU Memory

Figure 5: Virtual wavetable/graintable requiring unaligned and
random memory accesses in the degenerate case.

The buffer is sized sufficiently large, virtual playheads are
spaced randomly throughout the buffer, and virtual loops are set
to different lengths of up to one second of audio, in order to ex-
ceed caches and force reads to the underlying memory. Buffer
size is the default 512 samples at 48kHz. We assign one track per
GPU thread—a production application might process fewer threads
simultaneously to have working set fit in cache. Audio from each
individual playhead is returned to the host; a production applica-
tion might choose to mix some of these on the GPU side to avoid
I/O costs isolated in Section 3.2. Results for varying number of
virtual tracks/grains are in Table 6. We see the AS architecture
performs well in this test; the discrete GPU can still read from the
128MiB buffer at audio rates.

3.5. 1D Convolution

A parallel convolution experiment involves several threads each
convolving an input buffer of with its own assigned static impulse
response. The impulse response memory may be declared constant
or “texture” memory on each platform which may enable perfor-
mance gains. With 128 threads and impulse responses of length
1024, there was no significant performance gain marking the im-
pulse response buffers constant. On the PC platform, performance
analysis revealed the data was cached as it fits in thread-local mem-
ory.

457

Input/Output Weight % | PCpso PChros | ASpso ASpos | ASunified,pso ASunified,pos
1/99 10.06 11.82 9.14 9.25 0.15 0.632
20/ 80 9.84 11.68 8.77 8.85 0.134 0.185
50/50 9.57 11.5 8.49 8.56 0.157 0.556
80/20 9.37 11.1 7.93 8.01 0.130 0.175
97/1 9.09 10.59 7.66 7.75 0.133 0.17
Table 6: Latencies for N tracks reading into 128MiB buffer, mil-
Jiireatls liseconds. Processing 512 samples at 48kHz.
LT NN/ T 1]

Tracks PCp50 PCp95 ASP:)U ASp95
32 0.138 0.197 0.229 0.295
64 0.141 0.218 0.609 0.711
128 0.163 0.427 0.657 0.787

1024 0.364 0.578 0.723 0.784
4096 1.030 2.69 0.719 0.925
8192 1.931 2.253 0.772 1.070
16384 3.810 4.808 0.924 1.218
32768 12.225 20.863 | 3.618 4.140
65536 19.297 36.334 | 4.801 7.460

3.6. Impact of DAW-Simulation

For quantitative results of DAW-sim impact, please see Table 8.
Results show an often small, but consistent increase in median and
tail latency when this mode is enabled. The effect is more pro-
nounced in the compute-heavy benchmark on the Apple Silicon
platform. We consider the kernel invocation a bit of an outlier as it
is much simpler and quicker than the other benchmarks.

Table 7: DAW-Sim compensation: Disabled vs Sleep vs Spin, PC
platform, IM Modes Benchmark

Metric Disabled | On-Sleep | On-Spin
p50 latency (ms) 2.87 7.37 2.87
p95 latency (ms) 3.73 10.94 8.07
Max latency (ms) 3.96 11.07 10.96

Table 8: Impact of enabling DAW-sim flag on p50 latency; runtime
increase over baseline

Test Pcoffﬁon ASOff*}DTL
Kernel Invocation 2.740 2.863
100MiB 1/0 1/99 1.049 1.108

1GiB 1/0 1/99 1.021 1.033
100MiB 1/0 99/1 1.002 1.090
1GiB I/0 99/1 1.028 1.005
100 Modes 1.000 1.537
1M Modes 1.093 1.283

Next steps in this area would be to run the benchmark code
as plugins inside a DAW and log latency stats. We may also wish
to run other plugins or processes alongside our console app to in-
crease contention, ideally in a repeatable manner.

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

3.7. Observations benefits of a unified memory architecture for reducing data transfer

times.

These benchmark results allow us to make observations about the
two platforms under consideration. The kernel launch and data
transfer microbenchmarks show that both platforms are able to
transfer significant amounts of data to and from the GPU during
an audio callback, with the majority of available callback time re-
maining for processing. These results mirror the microbenchmarks
in Renney et al.[5], who also measured function execution latency
and data transfer time, and obtained similarly successful results on
an NVIDIA and an AMD platform.

The higher-level, domain-specific benchmarks demonstrate the
systems’ ability to execute practical real-time audio effect tasks.
Both platforms were able to synthesize several thousand modes
or sound grains at audio rates. The desktop GeForce GPU excels
at raw arithmetic throughput, with correspondingly higher power
draw, while the unified memory architecture on the Apple Silicon
system allows us to eliminate significant data transfer overhead
and use a larger proportion of our audio callback for computation.

4. OBTAINING AND RUNNING THE CODE

The framework may be found mirrored at the following URLs:
* https://github.com/tskare/gpuaudiobench
* https://cm-gitlab.stanford.edu/travissk/gpuaudiobench

The repository contains independent and separately-buildable
PC (C++ / CUDA) and MacOS (Objective-C / Metal) implemen-
tations. The PC implementation was developed and run on Win-
dows, but OS-specific functionality was avoided.

Usage instructions and available benchmarks may be found
in the corresponding README . md files or by specifying ~help.
Global system parameters such as sampling rate or DAW simula-
tion mode may be adjusted in the code, with commandline param-
eters forthcoming.

Each benchmark will run several times (default 100), and col-
lect median, 95th percentile, and maximum seen latency. The con-
sole will print these latency statistics, and write them to a small
statistics file for easier consumption by scripts. A human-readable
message will also be printed, noting if that trial consistently met
real-time latency requirements. For example, a successful run
might output:

OK: max latency 1.212 ms under 10.667 ms
callback time limit. Please consider a
margin of safety as well.

In case the benchmark code had latency values that would have
overrun an audio callback, the message will be of the form such as:

WARNING: p95 latency 46.367 ms over
10.667 ms callback time limit (median ok).

5. CONCLUSIONS

A benchmark framework for GPU-Accelerated Audio was pre-
sented. This includes microbenchmarks and domain-specific bench-
marks. A novel extension to the benchmark framework towards
simulating the environment of data processing inside a digital au-
dio workstation was implemented and quantified.

Benchmark code was run on two contemporary, mid-range,
consumer MacOS and Windows systems. Both platforms were
revealed to be suitable for real-time audio processing. We note
high arithmetic throughput on the PC with discrete GPU and the

< 458

6. REFERENCES

[1] Lauri Savioja, Vesa Vilimaiki, and Julius O Smith III, “Real-
time additive synthesis with one million sinusoids using a
GPU,” in Audio Engineering Society Convention 128. Audio
Engineering Society, 2010.

[2] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet,
Connelly Barnes, Sylvain Paris, Marc Levoy, Saman Ama-
rasinghe, and Frédo Durand, “Halide: Decoupling algo-
rithms from schedules for high-performance image process-
ing,” Communications of the ACM, vol. 61, no. 1, pp. 106—
115, 2017.

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala, “PyTorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, pp.
8024-8035. Curran Associates, Inc., 2019.

[4] Travis Skare, “GPGPU patterns for serial and parallel audio
effects,” in Proceedings of the 23rd International Conference
on Digital Audio Effects (DAFx-20), 2020, pp. 125-131.

[5] Harri Renney, Tom Mitchell, and Benedict R Gaster, “There
and back again: The practicality of GPU accelerated digital
audio.,” in NIME, 2020, pp. 202-207.

[6] Chris Gregg and Kim Hazelwood, “Where is the data? why
you cannot debate CPU vs. GPU performance without the
answer,” in (IEEE ISPASS) IEEE International Symposium
on Performance Analysis of Systems and Software. 1EEE,
2011, pp. 134-144.

[7] Gene M Amdahl, “Validity of the single processor approach
to achieving large scale computing capabilities,” in Proceed-
ings of the April 18-20, 1967, spring joint computer confer-
ence, 1967, pp. 483-485.

[8] SN et al. Hou, “Review of modal synthesis techniques and a
new approach,” Shock and vibration bulletin, vol. 40, no. 4,
pp. 25-39, 1969.

[91 W Hwu Wen-Mei, David B Kirk, and Izzat El Hajj, Program-
ming Massively Parallel Processors: A Hands-on Approach,
Morgan Kaufmann, 2022.

[10] Scott A Van Duyne and Julius O Smith, “Physical model-
ing with the 2-d digital waveguide mesh,” in Proceedings of
the international computer music conference. International
Computer Music Association, 1993, pp. 40—47.

[11] Max Mathews and Julius O Smith, “Methods for synthesiz-
ing very high Q parametrically well behaved two pole filters,”
in Proceedings of the Stockholm Musical Acoustics Confer-
ence (SMAC 2003)(Stockholm), Royal Swedish Academy of
Music (August 2003). Citeseer, 2003.

https://github.com/tskare/gpuaudiobench
https://cm-gitlab.stanford.edu/travissk/gpuaudiobench

	1 Introduction
	2 Proposal
	2.1 GPU-Accelerated Audio Processing
	2.2 Metrics
	2.3 Parameters
	2.4 Structure
	2.5 Benchmarks: Microbenchmarks
	2.6 Benchmarks: Macrobenchmarks
	2.7 Future benchmarks
	2.8 Closer to real-world: DAW Simulation

	3 Results
	3.1 Kernel startup time
	3.2 Data transfer time
	3.3 Arithmetic: Modal Filter Bank
	3.4 Random Memory Access (RndMemN)
	3.5 1D Convolution
	3.6 Impact of DAW-Simulation
	3.7 Observations

	4 Obtaining and Running the Code
	5 Conclusions
	6 References

@inproceedings{DAFx24_paper_56,
 author = "Skare, Travis",
 title = "{GPGPU Audio Benchmark Framework}",
 booktitle = "Proceedings of the 27-th Int. Conf. on Digital Audio Effects (DAFx24)",
 editor = "De Sena, E. and Mannall, J.",
 location = "Guildford, Surrey, UK",
 eventdate = "2024-09-03/2024-09-07",
 year = "2024",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 doi = "",
 pages = "452--458"
}

