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ABSTRACT

We describe a sequence of methods for producing videos from au-
dio signals. Our visualizations capture perceptual features like har-
monicity and brightness: they produce stable images from periodic
sounds and slowly-evolving images from inharmonic ones; they
associate jagged shapes to brighter sounds and rounded shapes to
darker ones.

We interpret our methods as adaptive FIR filterbanks and show
how, for larger values of the complexity parameters, we can per-
form accurate frequency detection without the Fourier transform.
Attached to the paper is a code repository containing the Jupyter
notebook used to generate the images and videos cited. We also
provide code for a realtime C++ implementation of the simplest
visualization method.

We discuss the mathematical theory of our methods in the two
appendices.

1. INTRODUCTION

In a diverse range of musical settings, it is useful to build corre-
spondences between images and sound. Images can give instruc-
tions for creating sound — woodwind fingerings, guitar chord di-
agrams & tablature, traditional musical notation — or can act as
proxies for its manipulation and rearrangement — such as a wave-
form display in a DAW’s timeline, or a spectrogram in a graphic
equalizer. Such methods allow sound to be experienced offline, out
of time.

Beyond practical means for converting back and forth between
sound and image, there is a rich history of audiovisual creative
work — art pieces that investigate the ramifications of a fused sense
of sound and sight. In this paper, we describe modes of producing
images alongside sound, with the aim of augmenting or assisting
auditory perception. Our methods thus blur the line between tools
for analysis and creative work.

2. OUR METHODS

In this section we describe a sequence of methods for produc-
ing low-dimensional curves from audio signals. The methods are
parametrized by choices of embedding dimension N and analysis
dimension k. All methods follow the blueprint below:

1. (Delay embedding) From an audio signal (a one-dimensional
time series) produce an N-dimensional time series.
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2. (Subspace learning) Find the k-dimensional subspace near-
est to recent values of the high-dimensional time series.

3. (Visualization) Project from the /N-dimensional space to the
k-dimensional subspace and visualize the low-dimensional
curve.

The delay embedding, popularized by Takens [1] and Packard
et al. [2], is a tool for analyzing the geometry of nonlinear dynam-
ical systems. Roughly speaking, Takens proved that the space of
position-momentum pairs of a high-dimensional dynamical sys-
tem (ODE) can generally be reconstructed from the trajectories
of a delay-embedded one-dimensional observation of the system.
The delay embedding as a visualization tool appears occasionally
in the applied physics and music literature under the name phase
space reconstruction. Gibiat [3] studied the utility of these visual-
izations in demonstrating certain nonlinear behaviors in feedback
systems; Monro & Pressing [4], Gerhard [S5] and Terez [6] used
them to visualize the periodicity of musical sounds; and Lindgren
et al. [7] to recognize phonemes in speech.

Our procedure for subspace learning is discussed in detail in
Appendix A. In a sense, it is very similar to low-rank approxi-
mation via the truncated SVD, but, unlike a black-box numerical
method, exhibits continuity properties: our estimate of subspace
changes is guaranteed to change gradually with slow changes in
the audio signal.

When £ = 2,3 the methods naturally allow us to visualize
signals; when k is larger, they blur into DSP methods for accu-
rate frequency detection without the Fourier transform. Through-
out, we will consider digital signals z : Z — F, where Z =
{...,=2,-1,0,1,2,...} is the set of integers and F' is a number
system, either R or C. Throughout, when A is a matrix, A* de-
notes its transpose or conjugate-transpose, depending on whether
A has real or complex entries.

2.1. Definitions and Preliminary Properties

Below is a more granular description of the process sketched above.
First, choose the embedding dimension N and projection dimen-
sion k. Then:

Step 1 (Delay embedding). Given a signal z : Z — F and a
choice of integral delays d = (0 < di < --+ < dn-1), con-
struct the delay embedding z* : 7 — F | a discrete curve in FN
defined

2%(n) = (2(n),z(n —d1),...,2(n —dn_1)). (1)
Step 2 (Subspace learning). At each timestep n, find an orthonor-

mal k-frame A(n) (an N X k matrix with orthonormal columns)
whose image is the best k-dimensional subspace approximating
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the discrete curve z* over recent timesteps. We find A(n) by solv-
ing an optimization problem on the Stiefel manifold Vi,(FY), de-
fined

Vi(FY) = {A € Matnwx(F) | A*A =1ds. }. )

Step 3 (Projection). Draw the curve n — A(n)*z%(n) in F*.

In the remainder of this section, we give brief demonstrations
and motivation for these visualization methods. A more thorough
look at the methods, and their behavior on signals that aren’t strictly
periodic, is postponed to Section 3. To start, we highlight two
properties of our methods:

Observation 1. If z is periodic then so too is z°, with the same
period. This means that over any time interval greater than the
period, the path traveled by the curve z* will close up, and there-
fore the k-dimensional subspace best approximating z* will not
change. In other words, periodic signals z give stable visuals
A4,

Observation 2. If z is nearly periodic — such as an inharmonic
sum of sinusoids, or an equal-tempered chord approximating a
rational interval — then 2% will be as well, so A* 2% will change
slowly in shape, according to the rates that component sinusoids
phase with one another.

2.2. A First Pass: Minimal Embedding Dimension

In the simplest possible case, F = R, N = k = 2, and d =
(0,d1) so the second step from 2.1 collapses. In concrete terms,
we are given a real signal z : Z — R, say with sample rate
fs = 48000. We choose d; (in this case, take di = f5/60) and
assemble a movie with framerate f,, = 60 Hz whose j" frame
consists of a path passing through the points

{(2(n),z(n —d1))} C R’ 3)

where n ranges over the time interval starting at (fs/fm)j of
length fs/ fm. We make the following observations:

Observation 3. When z is a sinusoid of frequency w, z% will be
an ellipse, whose eccentricity and orientation are determined by
the relationship between w and fs/d:.

This first method has one principal drawback, a kind of alias-
ing: any periodic signal whose frequency is a multiple of fs/d1
(in our case, 60 Hz) will have visualization sitting entirely on the
line y = . For periodic signals with additional symmetry, like
sinusoids, the aliasing appears at all harmonics of of fs/(2d1) (in
our case, 30 Hz).

In Figure 1 we show several synthetic periodic waveforms at
several frequencies, visualized by this method. Notice how the
shapes change as harmonics pass multiples of 60.

2.3. Small Embedding Dimension

We can deal with the aliasing problem by setting N = 3, k = 2
and choosing, for example, d = (0,491,797). Since d; and
do — dy are coprime, no frequencies alias as in the previous ex-
ample. Now our delay-embedded curve is in three-dimensional
space; our subspace learning optimization algorithm figures out
the best direction from which to view the space curve, and our
visualization is the plane curve n — A*(n)z%(n).

As in the case above, sinusoids will be visualized as ellipses.
More generally, for arbitrary d = (0 < d1 < -+ < dn—1):
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Figure 1: Visualizations of sounds of varying pitch and timbre.
Each column corresponds to one waveform at various frequencies;
each row to one frequency played by varying waveforms. The
columns, left to right, are (a) sinusoid, (b) square, (c) sawtooth,
(d) harmonic sum of sinusoids, (¢) harmonic sum of square waves,
(f) harmonic sum of sawtooths. The rows, top to bottom, are at
fundamental frequencies 100, 110, 120, 130, 140 Hz. Notice the
aliasing of all waveforms at 120 Hz.

Observation4. When z is a real sinusoid n — sin(wn), the delay
embedding z% lies on a real two-dimensional subspace of RY.
When z is a complex sinusoid n — e*“", the delay embedding z*
lies on a (complex) one-dimensional subspace of CY spanned by
the vector

e—iwd N—1 ) )

The result about real sinusoids follows from the angle sum and
difference identities.

In Figures 2 and 3 we visualize A*z? for the same wave-
forms as in 2.2, delay embedded in R? and RS, respectively. To
demonstrate what the subspace learning procedure is doing, we
have added points to the visualization, the images of the standard
basis {e1, €2, ..., en} under our projection — in other words, the
rows of A. Notice that they change position when the fundamental
frequency changes. In 2.5 we will interpret A as providing pitch
information, while the shape of the curve encodes timbre.

“)

—iwd] —iwda
(17 e e ey

2.4. Higher Embedding Dimension

When the embedding dimension grows, we begin to see pitch-
timbre decoupling. In Figures 4 and 5, N = 24 and N = 96,
respectively, we see that in a given column, the shapes of the
curves A*z¢ are nearly the same, while the matrices A change
(as recorded in our figures by the colorful spirals).

In fact, we can interpret our algorithm as learning an FIR
filterbank (the impulse responses being the columns of A) that
captures as much of the energy of our signal as possible. When
A is constant, the k-dimensional signal n — A*z%(n) is pre-
cisely a convolution of z with k signals, each having support on
{0, dl, d2, N ,dz\zfl}.
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Figure 2: Visualization of the signals from Figure 1, now with
N = 3,d = (0,491, 797). Notice the elimination of aliasing, but
the variation within each column in the shapes of the gray curves.
The colorful dots alongside each visualization are the rows of the
projection matrix A.

3 0D
DO O 0B
O ¢ a0 O

R .

&

Q.

OO O00O
DOOOC

Figure 3: Visualization of the signals from Figure 1, now with
N = 5and d = (0,191,307,491,797). Notice that shape is
much more consistent in each column. The colorful dots, again,
represent the rows of the learned projection matrix A.
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Figure 4: Visualization of the signals from Figure 1, now with
N = 24and d = (0,1,3,6,10,15,...,253,276). Now the
shapes of the gray curves are very consistent in each column, and
changes in frequency are recorded instead by the colorful spirals —
the rows of A — which turn through a greater angle when the pitch
is higher.

2.5. Higher Analysis Dimension

In this section we consider methods for £k > 2, and set d =
(0,1,...,N — 1). The discussion is motivated by the following
observation:

Observation 5. The delay embedding

(n = 2(n)) = (n = 2%(n)), Q)
thought of as a map between the vector spaces of signals and N -
dimensional curves, is linear. Therefore, following Observation
4, if z : Z — F is a superposition of k complex (resp. real)
sinusoids, the curve z° lives on a subspace of F of dimension k
(resp. 2k).

We can view Observation 5 as an improvement of Observation
1: even if our signal is not itself periodic, provided it is composed
of finitely many sinusoids, the subspace learning process will sta-
bilize, and the learned subspace will contain the information of
the signal’s frequency content. In the one-dimensional case, for a
complex sinusoid z : n — €™, the curve z? lies on the complex
line spanned by

Ve = (17671‘“),672“17 .. .,ef(Nfl)iw) ech. (6)
If 2z is composed of sinusoids of frequencies {w1, . . . ,wy }, the
curve 2 lives on the subspace W spanned by {ve,,, .. ., Vw, }. In

Appendix B, we describe an algorithm that, given as input a matrix
A € Vi,(C") whose image is W, recovers the list of frequencies.
Experimentally, our algorithm is accurate to within 10~° Hz when
we set N = 480 and select £ = 30 frequencies at random. The
code for performing those experiments can be found in the note-
book Frequency . ipynb in the attached repository [8].
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Figure 5: Visualization of the signals from Figure 1, now with
N =96and d = (0,1,2,3,...,95). Shapes of the gray curves
are almost identical in each column; again, the colorful spiral, rep-
resenting rows of A, can be seen to tighten as the frequency in-
creases, as in Figure 4.
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3. VIDEO EXAMPLES & DISCUSSION

On sounds that are more complex than the simple periodic sig-
nals used to generate the static figures above, our methods produce
videos as output. We provide examples of these videos in the at-
tached code repository [8], using the parameter choices of Figures
1, 3, 4, and 5. Visualizations of orchestral sounds are found in
Orch, and of synthetic sounds in Synth. In the README of the
code repository, we have embedded a handful of videos to show-
case phenomena detected by our methods.

For each sound we produce four visualizations in parallel — for
those four parameter choices — to demonstrate the different infor-
mation extracted in each case. For all parameter choices, period-
icity of the signal is reflected in the stability of the image drawn.
When the embedding dimension is small, the shape of the drawn
curve is very sensitive to brightness and timbre. On the other hand,
when the embedding dimension N grows, the visualizations react
to fundamental frequency: it’s easy to distinguish by eye sounds
that are high- or low-pitched: the multicolored curve represent-
ing the learned projection matrix A coils more tightly for higher-
pitched signals.

We generate visualizations of orchestral sounds against record-
ings from IRCAM’s OrchideaSOL database [9]. For each of a se-
lection of instruments (accordion, alto saxophone, bassoon, bass
trombone, double bass, clarinet, flute, guitar, French horn, harp,
oboe, trobone, viola, and cello) we generate videos of a sequence
of notes played across the range of the instrument at three differ-
ent dynamics. The purpose is to provide visual comparisons of the
effects of:

* Constant pitch, varying dynamic.
* Constant pitch, varying instrument.
* Constant instrument and dynamic, varying pitch.

Our visualizations of saxophone notes see changes in the presence
of high partials as amplitude increases; they see the noise & air
sounds of the flute alongside its stable fundamental; visualizations
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Figure 6: A still from our visualization of an accordion, playing
C3, mezzo-forte.

Figure 7: A still from our visualizations of a double bass, playing
G2, mezzo-forte.

of bowed double bass show that the sound is harmonic while bow
is in contact with the string, and inharmonic when the bow is re-
leased (as the higher partials are no longer phase-locked by the
bow’s stick-slip action).

In Synth are visualizations of synthetic sounds:

A harmonic sum of sinusoids with varying coefficients (con-
stant pitch, varying brightness).

A sum of sinusoids with varying harmonicity (constant bright-
ness, varying harmonicity).

White noise pushed through a resonant filter with varying
@ (constant pitch, varying noisiness).

A glissando (constant timbre, varying pitch).
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4. FURTHER WORK

4.1. Applications to Machine Learning

As discussed in 3, our visualizations produce images that are per-
ceptually salient. In future work, we plan to investigate extract-
ing features from the visualization algorithm for use in clustering,
classification and other MIR-related machine learning tasks.

4.2. Applications to Digital Signal Processing

The frequency detection algorithm discussed in 2.5 and Appendix
B performs very accurately in the synthetic cases we have tested,
but there is more to study concerning its stability & robustness to
noise.

Since our algorithm indirectly detects the periodicity of wave-
forms, our methods may have applications as well to DSP tasks
like harmonic-percussive separation.

4.3. Applications to Performance

The methods we describe are all theoretically realtime, in the sense
that they require knowledge only of present and recent values of
the signal; thus they could in principle be implemented in a live
audiovisual environment. We have done so already for the simplest
method (from 2.2). Included in the code repository is the C++
source for that application, and a link to a performance that used it
live. In future work we plan to expand this realtime application to
work with larger N and k.

Setting F = R and k£ = 3 produces a curve representing
the signal in three-dimensional space: in future work we plan to
integrate our realtime waveform visualizer with a virtual reality
environment or other navigable virtual three-dimensional space.

5. CONCLUSIONS

We have described the implementation of a sequence of methods
for producing videos from sound. These methods are sensitive to
various perceptual features of sound, and generalize to frequency
recognition algorithms — they give visual analogs to auditory per-
ception, and thus sit somewhere between tools for creative work
and signal processing.
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A. SUBSPACE LEARNING & THE STIEFEL MANIFOLD

Let the Stiefel manifold Vi,(F™) denote the space of orthonormal
k-frames in FV, that is,
Vi(FY) = {A € Maty«x(F) | A¥A =1ds}. (7
Our subspace learning problem takes as input a segment of the
delay-embedded audio signal in FV (a pointcloud) and attempts to
learn an orthonormal basis for a low-dimensional subspace nearby.
The space Vi (F™), as its name suggests, is a compact, smooth
submanifold of Mat y x  (F') whose tangent space at A € Vi (F),
which we refer to by T'4, has the explicit form
Ta ={H € Matyxr(F) | A*H + H*A = 0}. (8)
In fact there is an explicit projection map from the ambient vector
space Pa : Matnxx(F) — Ta given
Py: X — (Id-AA9)X. )
Geometrically, matrices tangent to Vi, (F) at A are those whose
columns live in the orthogonal complement of im A.
It is easy to check that this map is self-adjoint and idempotent
with image equal to T4, so it is the orthogonal projection to 7T'4.
This equips us with a method of studying the problem at hand:

Problem 1. Given points yi,...,ym € FY and weights 0 <
a; <1, find an element A € Vi,(F™) minimizing

1 & .
F(A) = 5D aglly - Ad . (10)
j=1

Assuming the problem can be solved tractably, a solution A
will provide an orthonormal basis for a k-dimensional approximat-
ing the data {y1, ..., ym}, weighted according to {«; }. This sub-
space is the best fit in the sense that it minimizes the total squared
distance between points y; and their projections AA*y;.
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We solve this problem by gradient descent on f, and projection
back to T'a so as to remain near the Stiefel manifold. Expanding
the expression above, we find that

QZO‘J ||yJH - ||A*y]|| )
j=1

—_

amn
and so, since the {y; } are constant, minimizing f is equivalent to
maximizing
1 . * 2
= 52043'“14 v~
j=1

Thinking of this as a scalar function Maty «x(F) — F we can
compute its gradient with respect to A, which has the explicit form

A) =D o;(yy))A= (Zajyjy;) A (13)
Jj=1 j=1

In other words, Vg(A) is a weighted sum of rank-one matrices.
Putting this all together, with learning rate ¢ > 0, we have the
following update rule:

12)

m

A+— A+ e(Id—AA") (Zajyjyj) (14)

This performs a step of gradient ascent on g, constrained to move
along the tangent direction of Vi (F).

Over many iterations the matrix A may drift from the Stiefel
manifold. We can measure this drift by the quantity

h(A) = 114" - 1d]3. (15)

(The matrix norm above, || - || 7, is the Frobenius norm on matrices,
defined || B||3- = tr(B*B)). Clearly h(A) = 0 if and only if A €
Vi (F). 1t’s not hard to compute that Vh(A) = A(A*A —1d);
with the choice of an additional learning rate 6 > 0, the additional
update step

A— A+ 5A(Id—A*A) = A((1 + 6)1d —GA* A),  (16)

will keep our iteration close to the Stiefel manifold by gradient
descent on h. We make the final observation that, since the update
rule above takes the form A <— AX of a right-multiplication,
we don’t modify the span of the columns of A via these updates:
maintaining orthogonality doesn’t interfere with our other iteration
process, which learns the subspace.

In our code repository, this algorithm is implemented in the
analyze method inside Visualization.ipynb, the main
Jupyter notebook [8].

B. FREQUENCY DETECTION

In this section we consider the case where N is large. We use a
full set of delays (d = (0,1,2,3,...,N — 1)) and k* ~ N. For
simplicity of notation we will work over F = C.

For w € [—m, ), recall our definition from Equation 6 of the
complex vector v, = (1,7, ..., e’i(N’”“). This vector v,
spans the one-dimensional line of best fit for the delay embedding
of the sinsuoid z(n) = ¢™™. We can think of v,, as the image
under f : C — CV

f(z) = (1,2’,22,..‘,21\7_1) 17)
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of the circle S* C C (in fancier language, f is the Veronese em-
bedding CP! — CP™ ! restricted to an affine chart; it general-
izes the “twisted cubic”).

First, I claim that for any k& < N, the vectors {v.,, ...
are linearly independent. Construct the matrix

7vwk:}

1

—iwq

1

—iwg e*iwk

e—(N—l)iwl e—(N—l)iw2 e—i(N—l)'ka

(18)
This is a Vandermonde matrix; when k < N this matrix is singular
iff e="9 = e~™ for some j # £. Thus {vew,, ..., Vs, } is lin-

early independent. This has the following important consequence:

if {w1,...,wx}and {m,...,nx} are two sets of frequencies and
2k < N, then
span{vw, , . .. Vw, } = span{vy,, ..., Uy, }
(19)
— {wl,...,wk} = {7]17"'>777€}'
In other words, subspaces of C™¥ of the form span{v.,, - - - , Ve, }

determine the frequencies {w1, ..., wy } provided k isn’t too large.

To retrieve frequency information from the signal z, we need
to solve a slightly more subtle problem: our delay embedding and
optimization procedures give us some orthonormal basis for W =
span{vy; | j}, represented by A € Vi (F™), but we want the
vectors {v,,; } themselves.

For this discussion we augment our notation from Equation 6

to include the ambient dimension, so vL will mean the vector in

C" whose n entry is e~ Similarly, W™ will be the span of
our collection {’UwJ )} Consider the (N — 1) x N matrices L, R
defined

1 0 0 1
L= |, R=1|: 20)
1 0 0 1
Notice that LU(N) LN_D and RU&N) = ei“vff\]—l), so L,R

both take W V) surjectively to W=D,

Let X be the (unknown) N X k matrix whose columns are
{vw,} and let Y be the k x k invertible such that AY" = X. Let
D be the diagonal matrix whose j™" entry is e ~*J
summarize the behavior of L, R as

. Then we can

RX =LXD™ . 1)

Now define S = Y DY ~!. Then S satisfies
RAS = (RXY ") (YDY ™)
=RXDY ™!
=LXD 'DYy!
=LXY ' =LA

(22)

In other words, S is the time-shift operator on W™= Tt is also
the solution to the least squares problem

(RA)*(RA)S = (RA)"LA. (23)
which is straightforward to solve numerically since (RA)*RA =

A*(R*R)A is very close to the identity. The eigenvalues of .S are
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the entries of D, and thus we’ve recovered the frequencies we were
looking for.

The code implementing this algorithm is found in the Jupyter
notebook Frequency . ipynb in [8].
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