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ABSTRACT

This paper proposes a real-time implementation of a linear-phase
octave graphic equalizer (GEQ), previously introduced by the same
authors. The structure of the GEQ is based on interpolated finite
impulse response (IFIR) filters and is derived from a single pro-
totype FIR filter. The low computational cost and small latency
make the presented GEQ suitable for real-time applications. In
this work, the GEQ has been implemented as a plugin of a spe-
cific software, used for real-time tests. The performance of the
equalizer has been evaluated through subjective tests, comparing
it with a filterbank equalizer. For the tests, four standard equal-
ization curves have been chosen. The experimental results show
promising outcomes. The result is an accurate real-time-capable
linear-phase GEQ with a reasonable latency.

1. INTRODUCTION

In audio applications, graphic equalizers (GEQs) play an essential
role. This type of equalizer is called graphic because the user can
adjust only the gain of each band, defining a graph of the desired
magnitude response [1, 2, 3]. GEQs are realized as filterbanks in
which the center frequency and the frequency bandwidth are fixed.
This paper presents a real-time implementation of the linear-phase
octave GEQ proposed in [4].

GEQs can be categorized depending on their phase response
as minimum phase or linear phase. Minimum-phase GEQs show
the lowest latency and their impulse response is zero before the
main peak, avoiding pre-ringing effects. These properties make
minimum-phase GEQs suitable for live music applications, where
the latency must be as small as possible. However, the minimum
phase may affect the audio perception in applications such as mul-
tichannel equalization, parallel processing, phase compatibility of
audio equipment, and crossover network design, where the linear
phase is more suitable.

A linear-phase system preserves the phase of the input signal
[5] and prevents phase distortions. As an example, in multichannel
audio equalization, the target magnitude response of each channel
changes. A non-linear-phase system also produces variations in
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the phase response, affecting the spatial impression [6]. In addi-
tion, phase distortions may be more audible, especially in speech
equalization [7].

Minimum-phase GEQs are usually realized with infinite im-
pulse response (IIR) filters arranged in a cascade [8, 1, 9, 10]
or a parallel [1, 11, 12, 13] structure, in which each filter has a
fixed center frequency and bandwidth and only the gain is variable
[14]. In [15, 10, 13], GEQs formed by second-order IIR sections
are proposed, reaching a good accuracy with a reduced computa-
tional cost in terms of number of operations per sample. In con-
trast, linear-phase equalizers can be designed with finite impulse
response (FIR) filters, which guarantee a linear phase response [3].
Moreover, FIR filters are not affected by numerical problems that
may occur with IIR solutions [16]. The first digital FIR GEQs
were developed in the 1980s [17, 18, 19] and, as for IIR GEQs,
they are usually designed with parallel structures [17, 18, 20].

A linear-phase GEQ can be realized with a single high-order
FIR filter that approximates a target frequency response defined
by the user, as suggested by McGrath [20]. The target curve can
be obtained through the interpolation of the command-gain points
[19, 21], since only the gains of the center frequency bands are
well defined. The length of the FIR filter corresponds to the length
of the lowest band filter, since it is the narrowest and thus has the
longest ringing. Usually, a good accuracy at the low frequencies
is achieved with a filter length of at least several thousand sam-
ples [19, 22, 23, 24]. In addition, the single FIR filter must be
completely redesigned every time the gains at the command points
change, requiring additional computing, which is unsuited for real-
time modifications of the target response.

Different solutions can be found to reduce the computational
complexity of FIR GEQs. Frequency-warped FIR filters [25, 26]
allow for the reduction of the filter lengths at low frequencies.
However, warped FIR filters are obtained through a frequency trans-
formation that uses IIR filters and results in a non-linear phase
response. Fast convolution [27] is another approach applied for
reducing the computational cost of FIR GEQs [28, 29, 30, 31]. In
this case, the equalized signal is obtained by executing complex
multiplication of the discrete Fourier transform (DFT) of the input
signal, elaborated in frames, with the DFT of the filter’s impulse
response and anti-transforming of the result. The transformations
are performed by implementing the fast Fourier transform (FFT) to
save computational cost. Although the FFT-based approach guar-
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antees a linear phase response, the frame-based filtering introduces
a high latency [29, 4].

Linear-phase FIR GEQs also can be realized using multirate
processing [18, 19, 32, 23]. In this case, the sample rate can be
different for each band. In particular, the higher frequency bands
use a large sample rate, while the lower frequency bands work at
a slower rate. After the filtering, the band signals are upsampled
to the original sample rate and summed to obtain the output of
the equalizer. The filterbank equalizer (FBEq) of [32], based on
multirate filtering, is used in this paper as a comparison for the
experiments.

An interesting option for saving computational complexity has
been proposed by Hergum [33]: an FIR GEQ is designed using in-
terpolated FIR (IFIR) filters [34]. The use of IFIR filters for the
GEQ design has recently been extended in [35, 4]. An IFIR fil-
ter is composed of the cascade of two FIR filters, in which the
first one is interpolated (stretched) and the second one attenuates
the unwanted spectral images produced by the interpolation [34].
IFIR filters have a linear phase and small ripple requiring a com-
putational cost lower than conventional FIR filters. In [33, 35],
the IFIR approach is used to develop uniform GEQs, in which all
the bands have the same bandwidth. However, standard graphic
equalizers use a logarithmic band division [3], which is necessary
for audio applications due to the human perception of sound and
the nature of music.

In this context, in [4], an efficient linear-phase octave GEQ
based on IFIR filters is proposed. The band filters of the GEQ are
arranged in a parallel tree structure derived from a prototype FIR
filter. The design uses complementary filters to guarantee a flat
magnitude response when all the gains are the same. The IFIR
GEQ of [4] presents an approximation error of less than ±1 dB at
the command frequencies, similar to the traditional IIR GEQs. The
computational cost is much lower than the linear-phase GEQs and
slightly higher than the state-of-the-art IIR GEQs. The reduced la-
tency and the improved computational efficiency of this equalizer
make it suitable for real-time applications.

In this paper, a real-time implementation of the GEQ of [4]
is presented. The low latency and the reduced computational cost
make the GEQ suitable for real-time applications. The implemen-
tation is realized by using a specific software and the GEQ is devel-
oped as a plugin. The performance of the equalizer has been evalu-
ated through subjective listening tests implementing four standard
equalization curves and comparing it with the FBEq of [32].

The paper is organized as follows. Section 2 describes the
design of the implemented GEQ. Section 3 explains the real-time
implementation. Section 4 discusses the experimental results. Fi-
nally, Section 5 concludes the paper.

2. GRAPHIC EQUALIZER DESIGN

The linear-phase GEQ proposed by Bruschi et al. [4] is an octave
equalizer with the following ten band center frequencies: 31.25 Hz,
62.5 Hz, 125 Hz, 250 Hz, 500 Hz, 1.0 kHz, 2.0 kHz, 4.0 kHz, 8.0
kHz, and 16.0 kHz. The bands are numbered from lowest to high-
est using index m = 1, 2, 3, ..., 10.

The scheme of the implemented linear-phase octave-band GEQ
is shown in Fig. 1. This design uses the sample rate of fs =
48 kHz. The GEQ design is based on a tree structure derived from
a half-band lowpass prototype FIR filter HLP(z) with a cutoff fre-
quency of 12 kHz and order N = 18, corresponding to a filter
length of N + 1 = 19 [4]. The filter HLP(z) is designed using

the Kaiser window with β = 4 [36]. The last band of the equal-
izer H10(z) is obtained by the complementary highpass filter of
the prototype filter as

H10(z) = z−D −HLP(z), (1)

where D = N/2 is the delay. According to Eq. (1), the filter of
the highest band H10(z) is implemented using a delay line and a
subtraction, as shown in the top right of Fig. 1. The other bands
are obtained with stretched versions of the prototype filter, such
as HLP(z

2) and HLP(z
4), which are prepared by inserting one or

three zero samples between each two coefficients of the prototype
FIR filter, respectively [37].

As depicted in Fig. 2, the output signal Ym(z) of the mth band
is obtained from the input signal X(z) as

Ym(z) = Hm(z)X(z), (2)

where Hm(z) is the transfer function of the mth band, computed
as

Hm(z) = z−∆m [z−DLm −HLP(z
Lm)]Gm(z), (3)

where the mth interpolation factor Lm is computed as

Lm = 2(M−m) = 2(10−m), (4)

and the transfer function Gm(z), which is shown in detail in Fig. 3,
is composed of the cascade of all previous band filters as

Gm(z) = HLP(z)

M−1∏
k=m+1

HLP(z
Lk ), (5)

with m = 2, 3, ...,M and M = 10. Looking at Fig. 2, the input
signal x(n) is first filtered by the filter Gm(z) and the resulting
intermediate signal xm(n), shown for each band in Fig. 1, is then
filtered by H10(z

Lm) that is implemented through a delay line and
a subtraction, according to Eq. (1).

From the third to the tenth band, a synchronization delay ∆m,
also shown in Fig. 2, is applied to align the band outputs and it is
computed as

∆m = τ − [2(M+1−m) − 1]D = τ − [2(11−m) − 1]D, (6)

where τ is the total delay of the equalizer in samples:

τ = [2(M−1) − 1]D = 511D. (7)

In Fig. 1, the synchronization delays ∆m are shown one upon
the other on the right-hand side, next to the command gain factors
gm. In the highest band (the top signal path in Fig. 1), the total
delay of 511D samples is formed by the cascade of the delay line
z−D and the synchronization delay z−510D . In the lowest band,
the synchronization delay is formed by the cascade of all the delay
lines between the input (top left corner in Fig. 1) and the output y1
(bottom right corner in Fig. 1), which have the lengths D, 2D, 4D,
8D, 16D, 32D, 64D, 128D, and 256D. This adds up to 511D
samples of delay.

The lowest band filter of the equalizer is obtained as a byprod-
uct, when the signal x2(n) is filtered with the prototype filter up-
sampled by a factor of 28, or 256, as shown in Fig. 1. The resulting
signal x1(n) does not require further processing, as it is the output
signal y1(n) of the lowest band filter. The filter HLP(z

256) also im-
plements the largest input-output delay, so a synchronization delay
is unnecessary in the two lowest bands, as seen in Fig. 1.
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Figure 1: Block diagram of the parallel FIR graphic equalizer for ten octave bands [4]. The signal path at the top produces the highest
band (16 kHz) whereas the bottom one produces the lowest band (31.25 Hz).
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Figure 2: Filters and delay lines associated with a single band
for m = 2, 3, ...,M , cf. Fig. 1. This mth band transfer function
Hm(z) represents the relation between Ym(z) and X(z).
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Figure 3: Details of the transfer function Gm(z) used in Fig. 2.

Finally, as presented in Fig. 1, the desired gain factor gm of
each band is applied and the total response of the equalizer y(n) is
obtained as a weighted sum of all band output signals:

y(n) =
M∑

m=1

gmym(n). (8)

Since the band filters determine the gain on their own band
very accurately, optimization of filter gains is unnecessary, and
command gains can directly be used as weights gm. It is worth
remarking that the use of complementary filters guarantees a com-
pletely flat total response, ensuring the perfect reconstruction, as
demonstrated in [4].

The performance of the described GEQ has been evaluated in
[4] in terms of computational complexity, latency, and error. The
total number of operations of the GEQ is 172, of which 64 multi-
plications and 108 additions. The latency, calculated following Eq.
(7), is equal to 4599 samples, i.e., 95.8 ms. In [4], the proposed
equalizer has been compared to other linear-phase approaches, i.e.,
single FIR GEQ and FFT-based GEQ, and the results are shown in
Tab. 1. The single FIR GEQ has the same latency as the proposed

Table 1: Performance of the proposed equalizer compared with
other linear-phase GEQs [4]. The best result in each column is
highlighted.

Method Latency Mul Add
Single FIR 4 599 4 600 9 198
FFT-based 20 983 116 168
Proposed 4 599 64 108

method, but a much higher computational cost. The FFT-based
approach shows the largest latency introduced by the frame-based
FFT processing. Although the latency can be reduced by apply-
ing the zero-latency partitioned convolution [38, 39], the computa-
tional complexity remains higher than the proposed GEQ. Finally,
the error is computed as the maximum magnitude difference be-
tween the desired and the obtained gains at the command frequen-
cies of the GEQ, taking into account all the possible configurations
with ±12 dB [40], and it is equal to 0.79 dB.

3. REAL-TIME IMPLEMENTATION

The proposed GEQ has been implemented as a PlugIn of the NU-
Tech software [41], that is a platform specifically developed to
test and tune real-time DSP algorithms through a PC workbench.
The developer can write his own plugIns, called NUTSs (NU-Tech
Satellites), in C++ and plug them into the GUI to test the results
on a common PC. The internal parameters of every plugIn can be
adjusted using the RTWatch (RealTime Watch).

Fig. 4 shows the flowchart of the real-time implementation
of the IFIR GEQ, and Fig. 5 shows the NU-Tech interface used
for experimental tests. The proposed GEQ is implemented in the
NUTS “IFIR_GEQ” built as a standard C++ dll file. The RTWatch,
shown at the bottom of Fig. 5, allows for the setting of twelve pa-
rameters, i.e., “ResetGdb,” which reset all the gains to zero, “By-
pass,” which can bypass the equalizer and copy the input directly
to the output with no elaboration, and the gains of the ten bands of
the equalizer. When the user presses the play button of the trans-
port panel, the instructions reported in Fig. 4 are executed. So, the
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Figure 4: Flowchart of the real-time implementation of the IFIR
GEQ.

input buffer, with a frame size length, is updated with input signal
samples. If the bypass is selected, the input samples are directly
copied to the output signal without elaboration. If the bypass is not
active, the input signal is filtered with the IFIR structure, derived
from the prototype filter, as shown in Fig. 1.

The prototype filter design and the calculation of the parame-
ters are implemented once before the audio playback and remain
always the same during the reproduction. Then, each mth band
output is multiplied by the respective mth gain gm. The gains are
chosen by the user using the RTWatch and may change during the
reproduction. As an example, in the RTWatch of Fig. 5 (i.e., the
table at the left bottom of the NU-Tech board) a ±12 dB zig-zag
setting gain is chosen. Finally, the band outputs are summed and
saved in the output buffer, so the output signal is updated. For the
experiments, a sample rate of 48 kHz and a frame size of 8192
samples have been used.

4. EXPERIMENTAL RESULTS

The proposed GEQ has already been objectively validated in [4],
evaluating its performance, as reported in Sec. 2. In this work,
subjective tests are performed in a listening room shown in Fig.
6, using two loudspeakers Hedd Type 20 MK2 spaced two me-
ters from the listener. The loudspeakers have been connected to a
sound card Roland Rubix22, managed by an HP Notebook laptop
Intel(R) Core(TM) i7.

To assess the perception of the audio quality of equalized sound,
listening tests following the ITU-R BS.1284-1 standard [42] were

performed. The subjects involved in the experiment were 10 ex-
pert listeners, ranging in age from 26 to 53 years. The term “ex-
pert” refers to a person with a technical background in acoustics,
working in the audio field, and who is experienced with subjective
listening tests. Tests conducted with this type of listener provide a
better and quicker indication of likely long-term results. However,
to avoid bias in the results of the listening test, the listeners were
not familiar with the study and the expected results. The test was
designed as a comparative test between the equalized and unequal-
ized track, used as a reference, and the bipolar discrete seven-grade
scale, shown in Tab. 2, was used.

Each listener, performed a total of 16 trials considering four
reference signals of different music genres, listed in Tab. 3, and
four equalization curves derived from the equalization curves used
in [43], i.e.,

• Bass Boost (BB) with gains [3.43 3.43 3.43 3 2.5 1.3 -1 -6
-6 -6];

• Treble Boost (TB) with gains [-6.25 -5.63 -4.38 -2 3 3 3 3
3 3];

• Midrange Dip (MD) with gains [6.25 3.43 1 -1 -2 -2.2 -2 -3
2 -1];

• Midrange Boost (MB) with gains [-6.25 -3.43 -1 1 2 2.2 2
3 -2 1].

The “Bass Boost” and the “Treble Boost” curves emphasize low
and high frequencies, respectively. The “Midrange Dip” is origi-
nated from an 80-phon equivalent loudness contour (ELC) of the
ISO-226 standard [44], by deriving the exact gain of the ELC curve
at the corresponding ten command frequencies. An equal-loudness
contour is a measure of sound pressure over the frequency spec-
trum, for which a listener perceives a constant loudness when pre-
sented with pure tones [43]. Finally, the “Midrange Boost” curve
is obtained by changing the control gains of the “Midrange Dip”
by sign.

The proposed IFIR GEQ has been compared with the filter-
bank equalizer (FBEq) of [32]. Fig. 7(a) shows the four equal-
ization curves obtained with the IFIR GEQ, and Fig. 7(b) shows
the ones obtained with the FBEq, using a prototype filter with a
length of 8000 samples. It is worth noting that the FBEq filter has
a much higher computational cost than the IFIR GEQ, requiring a
total of more than 600,000 operations per sample. Moreover, even
the latency of the FBEq is very high above 300 ms.

In each test, each subject was subjected to the evaluation, with
respect to the reference track, of the same track equalized with the
IFIR Graphic Equalizer (IFIR GEQ), of the same track equalized
with the Filterbank Equalizer (FBEq), and of the Hidden Refer-
ence, i.e., the reference, unequalized track hidden within the test
to authenticate the listener’s reliability.

All test tracks had a duration of twenty seconds, following the
guidelines of [42]. Initially, for all tests, the reference track was
played so that the listener became familiar with the original sound.
After that, for each reference signal, the program sequence was
presented in random order, and the listener did not know which
equalization methodology was under test. In addition, the listener
was allowed to listen to a track under examination several times to
obtain a more rational and less instinctive judgment. To evaluate
the performance of the IFIR GEQ and FBEq against the original
track, listeners were asked to rate some of the attributes suggested
by [42] according to the seven-grade comparison scale shown in
Tab. 2. The following attributes have been evaluated:
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Figure 5: Screen of the NU-Tech board used for experimental tests.

Figure 6: Photo of the setup used for listening tests.

• Timbre, i.e., accurate portrayal of the different sound char-
acteristics of sound source;

• Transparency, i.e., capacity to perceive all details of perfor-
mance clearly;

• Main impression, i.e., the integrity of the total sound image,
and the interaction between the various parameters.

The evaluation of the attributes is also affected by the nature of
the type of equalization. However, although some attributes may
present a rate lower than zero, which means that the original track
sounds better than the equalized one, the two equalizers can be
evaluated by comparing the score of each attribute.

The results of the subjective tests were processed by deriving
the mean value and confidence intervals for the standard deviation,
calculated considering a significance level of α = 0.05, i.e., with
a standard deviation (SD) of 95%, thus providing a statistically
meaningful analysis.

Table 2: Bipolar discrete seven-grade scale [42].

Comparison
3 Much better
2 Better
1 Slightly better
0 The same

-1 Slightly worse
-2 Worse
-3 Much worse

Table 3: Music tracks used for listening tests.

Genre Author Track
Classical Tchaikovsky Waltz of the Flowers
Jazz H. Hancock Edith and the Kingpin
Pop G. Michael Amazing
Rock ZZ Top Concrete and Steel

Tab. 4 reports the experimental results obtained with the equal-
ization curve “Bass Boost” for all four music genres (i.e., classi-
cal, jazz, pop, and rock), comparing the IFIR GEQ with the FBEq.
The analysis of the results of the “Bass Boost” equalization curve
shows a very similar level of both algorithms for all attributes in
each music genre. The most significant gap is in the transparency
of the classical genre where the IFIR GEQ scored 0.33 points
higher than its competitor equalizer at the same standard devia-
tion. Overall, the FBEq was preferred five times versus the IFIR
GEQ’s four times, and three times they scored the same.

Next, Tab. 5 shows the test results for the “Treble Boost”
equalization curve for the four music genres. In this case, the
results show a slight preference for the IFIR equalizer in that it
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(a)

(b)

Figure 7: Four equalization curves obtained (a) with the proposed
IFIR GEQ and (b) with the FBEq.

was preferred seven times out of twelve, and three times scored
the same as the FBEq. In addition, although by only 0.11 points,
the transparency of the IFIR GEQ in the pop genre was preferred
to the reference track as opposed to the track equalized with the
FBEq. In addition, for the pop and rock music genres, the IFIR
GEQ was always preferred over the FBEq.

Tab. 6 shows the results obtained with the “Midrange Dip”
equalization curve. This type of equalization curve improves all
three attributes, in both the equalizers and with all four music gen-
res. In particular, the IFIR GEQ scored better for timbre in each
music genre. It also scored a higher main impression for jazz mu-
sic than the FBEq by 0.44 points. The FBEq equalizer, on the
other hand, was better in terms of transparency with the classical
genre by 0.56 points. Overall, the IFIR GEQ was preferred six
times against the FBEq’s three times, and three times they scored
the same.

Finally, Tab. 7 reports the results for the “Midrange Boost”
equalization curve. In this case, there is a preference for the timbre
with IFIR GEQ for each musical genre. In addition, the main im-
pression for the pop genre of the implemented equalizer is found to
be 0.5 points higher than that of the FBEq track. Also, as with the
“Treble Boost” curve, the IFIR GEQ was preferred over its com-
petitor for all attributes in the pop and rock music genres. In gen-
eral, the IFIR GEQ was preferred nine times out of twelve, twice
they got the same score, and only once was the FBEq preferred.

Overall, there is a slight preference for the IFIR equalizer in
that it was preferred twenty-six times compared to eleven for the
FBEq, and eleven times they scored the same. However, the main
advantage of this graphical equalizer lies in the fact that the com-
putational cost of making it is significantly lower than that required
to make the Filterbank Equalizer. The use of the prototype FIR
half-band interpolated filter and its stretched versions makes it pos-
sible to avoid multiplications with the null values of the filter dur-

Table 4: Experimental results obtained with the equalization curve
“Bass Boost”. For each attribute and each music genre, the high-
est mean value is highlighted.

Equalizer
Timbre Transparency Main impression

GenreMean SD Mean SD Mean SD
value (95%) value (95%) value (95%)

IFIR GEQ -1.0 0.57 -0.67 0.65 -1.0 0.57 ClassicalFBEq -0.89 0.83 -1.0 0.65 -1.0 0.80
IFIR GEQ -1.0 0.92 -1.22 0.79 -1.11 0.95 JazzFBEq -1.22 0.71 -1.11 0.76 -1.22 0.71
IFIR GEQ -1.5 0.33 -0.9 0.46 -1.5 0.44 PopFBEq -1.4 0.32 -1.0 0.51 -1.5 0.53
IFIR GEQ -1.4 0.32 -1.7 0.42 -1.7 0.42 RockFBEq -1.4 0.32 -1.5 0.53 -1.6 0.43

Table 5: Experimental results obtained with the equalization curve
“Treble Boost”. For each attribute and each music genre, the high-
est mean value is highlighted.

Equalizer
Timbre Transparency Main impression

GenreMean SD Mean SD Mean SD
value (95%) value (95%) value (95%)

IFIR GEQ -0.5 0.74 -0.38 0.63 -0.38 0.82 ClassicalFBEq -0.75 0.89 -0.25 0.72 -0.38 0.82
IFIR GEQ 0.0 0.83 0.38 0.9 0.13 0.78 JazzFBEq 0.25 0.96 0.38 1.04 0.13 0.86
IFIR GEQ -0.56 0.87 0.11 0.83 -0.78 0.91 PopFBEq -0.66 0.73 -0.33 0.73 -1.0 0.65
IFIR GEQ -0.7 0.78 -0.5 0.67 -0.8 0.87 RockFBEq -1.1 0.74 -0.8 0.49 -1.1 0.68

Table 6: Experimental results obtained with the equalization curve
“Midrange Dip”. For each attribute and each music genre, the
highest mean value is highlighted.

Equalizer
Timbre Transparency Main impression

GenreMean SD Mean SD Mean SD
value (95%) value (95%) value (95%)

IFIR GEQ 0.67 0.57 0.44 0.58 0.67 0.57 ClassicalFBEq 0.56 0.47 1.0 0.46 0.67 0.80
IFIR GEQ 0.56 0.66 0.44 0.66 0.55 0.66 JazzFBEq 0.22 0.71 0.44 0.47 0.11 0.61
IFIR GEQ 0.89 0.69 0.89 0.51 0.67 0.57 PopFBEq 0.67 0.57 0.67 0.46 0.67 0.57
IFIR GEQ 0.8 0.64 0.9 0.46 0.9 0.54 RockFBEq 0.7 0.42 1.0 0.41 1.0 0.29

Table 7: Experimental results obtained with the equalization curve
“Midrange Boost”. For each attribute and each music genre, the
highest mean value is highlighted.

Equalizer
Timbre Transparency Main impression

GenreMean SD Mean SD Mean SD
value (95%) value (95%) value (95%)

IFIR GEQ -0.44 0.58 -0.11 0.61 -0.78 0.71 ClassicalFBEq -0.78 0.44 -0.33 0.57 -0.78 0.71
IFIR GEQ -0.3 0.93 0.0 0.65 -0.3 0.78 JazzFBEq -0.4 0.78 0.1 0.62 -0.3 0.78
IFIR GEQ -0.6 0.67 -0.4 0.6 -0.5 0.67 PopFBEq -1.0 0.51 -0.6 0.6 -1.0 0.65
IFIR GEQ -0.44 0.66 -0.33 0.57 -0.56 0.66 RockFBEq -0.67 0.33 -0.56 0.34 -0.89 0.22

ing the filtering phase, and the symmetry of the prototype filter
response makes it possible to halve the number of operations. In
contrast, the FBEq with a subband structure, based on two anal-
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ysis and two synthesis filters for each direct branch to which are
added two contributions due to the cross analysis and synthesis fil-
ters that take into account the interaction between adjacent bands,
has a higher computational complexity.

5. CONCLUSIONS

The paper proposes a real-time implementation of a linear-phase
octave-band graphic equalizer based on interpolated FIR filters.
The GEQ is realized as a PlugIn inside the NU-Tech software.
A first validation of the system has proven the performance of
the GEQ, confirming its effectiveness in terms of error, latency,
and computational complexity. Successively, the equalizer has
been tested through subjective tests and compared with a filterbank
equalizer. The experimental results have shown that the proposed
equalizer is preferred in most of the cases and it presents a much
lower computational load than the filterbank. Future plan of the
system include the development of the IFIR GEQ on an embedded
system.
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