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ABSTRACT

Reverberation is a key element in spatial audio perception, histor-
ically achieved with the use of analogue devices, such as plate and
spring reverb, and in the last decades with digital signal process-
ing techniques that have allowed different approaches for Virtual
Analogue Modelling (VAM). The electromechanical functioning
of the spring reverb makes it a nonlinear system that is difficult
to fully emulate in the digital domain with white-box modelling
techniques. In this study, we compare five different neural net-
work architectures, including convolutional and recurrent models,
to assess their effectiveness in replicating the characteristics of this
audio effect. The evaluation is conducted on two datasets at sam-
pling rates of 16 kHz and 48 kHz. This paper specifically focuses
on neural audio architectures that offer parametric control, aiming
to advance the boundaries of current black-box modelling tech-
niques in the domain of spring reverberation.

1. INTRODUCTION

In addition to pitch, volume, timbre and tempo, spatial perception
is a fundamental dimension of sound for humans. When a source
emits sound, it radiates through the medium (usually air) and is
received directly by the listener; this is known as direct sound.
However, sound waves also reflect off surfaces in the environment
before reaching the listener; these reflections arrive with a delay,
attenuated in intensity and filtered in frequency, resulting in our
perception of the acoustic space, which we call reverberation [1].

Throughout the history of music, the acoustics of physical lo-
cations have been used as a means to intentionally transform musi-
cal performances and provoke particular emotional states in listen-
ers. By the early 20th century, the possibility of recording sound
on a fixed medium added a new dimension unrelated to architec-
tural acoustics that opened up new creative practices with audio
effects [2, 3].

In terms of sound capturing, close miking reduces background
noise but do not capture the acoustics of the space, resulting in
very unnatural recorded material. In 1926, RCA patented rever-
beration chambers to overcome this limitation: a loudspeaker was
placed in a room and the sound emitted was captured by a micro-
phone placed at a distance. Later, in an attempt to achieve greater
flexibility, engineers began to combine analogue electronics with
mechanical systems [4, 5]. This led Laurens Hammond, in 1939,
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to file a patent aimed at "providing an improved electric musical
instrument having means of introducing a selected degree of rever-
beration effect into music, regardless of the acoustic properties of
the place where the instrument is played" [6]. This technology is
what we currently know as spring reverb.

After 1950 there has been a great development of analogue
audio equipment, including artificial reverberation units: mainly
spring, plates and tapes. These devices, which have shaped the
techniques and aesthetics of contemporary music production and
recording, exhibit non-linear behaviour and produce a certain de-
gree of distortion [7, 8, 9, 10, 11]. During the 1960s, Hammond
and Fender commercialized the first spring reverberation units for
guitar amplifiers. Later on, professional audio equipment manu-
facturers such as Fisher, Fairchild and Grampian released portable
units.

Since 1980, with the gradual transition to digital systems, VAM
has appeared as a field of research attracting increasing attention
[12, 13]. The aim of VAM is to emulate the sound characteristics
and behaviour of analogue audio equipment using digital signal
processing methods [14, 15, 16, 17]. Over the years three ap-
proaches have been developed: white-box, gray-box and black-
box modelling, each offer different paths to this challenge, balanc-
ing accuracy, computational efficiency, and the need for detailed
circuit knowledge. With the most recent advancements in data-
driven approaches, neural audio effects have emerged as a field of
investigation that can lead to effective results in modelling com-
plex effects.

Among white-box methods, spring reverberation modelling
has been approached as: parallel wave-guide structures [18], nu-
merical simulation techniques as finite difference schemes [19, 20,
21] or non-physical modelling techniques [22, 23]. While these
approaches have shown consistent results they demand large com-
putational resources or may struggle to model the entire set of char-
acteristics and non-linearities of a spring reverb, to address this
barrier a "DSP-informed", gray-box, has been explored in [24].

Whereas white-box and grey-box techniques have already been
addressed for spring reverb modelling, a comparison of different
black-box methods hasn’t been done yet. In previous work [25],
we started investigating neural network-based modelling strategies
for emulating spring reverb effects. This preliminary study in-
cluded a comprehensive review of relevant architectures reported
in the literature, as well as an analysis of their hyperparameter
configurations, loss functions and optimisation algorithms. In this
study, we extended our previous work with an analysis of two pub-
licly available datasets at different sampling rates to systematically
compare five different neural network models, including convolu-
tional and recurrent structures. We evaluate their effectiveness in
capturing the unique acoustic properties of spring reverberation
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with quantitative metrics.

2. BACKGROUND

Figure 1 shows the main components of a spring reverb, which
consists of an input transducer, or reverb driver, that converts the
incoming audio signal into mechanical vibrations by converting an
electric signal in a magnetic field. These vibrations travel through
one or more springs, where the propagation modes (longitudinal,
transverse and torsional) cause the waves to appear delayed at the
other end. These modified vibrations are then converted back into
an electrical audio signal by an output transducer, or pickup. The
number of springs, their diameter, length, stiffness, load and volt-
age are all variables that influence the salient perceptual qualities
of the audio effect device [18].

Figure 1: Spring tank diagram.

The electronics of a spring reverberation unit, depicted in Fig-
ure 2, is composed by a spring tank, a driver amplifier and a pre-
amplifier. It is a classic compact and portable audio system that
can be found in modern guitar amplifiers. Although the design of
spring tanks varies depending on the manufacturer, they might be
characterised by1:

• Type: it refers to the tank’s length and the number of trans-
mission springs. Length is defined in inches, where short
corresponds to 9.25", miniature to 6.5" and long to 16.25".
Commonly, tanks bring 2 or 3 transmission springs.

• IO impedance: input and output impedance may vary ac-
cording to the manufacturer and the type. 8–200

Ω

and 0.5-2k
Ω

are frequent ranges for input and output impedance.

• Decay Time: it indicates the time necessary to decrease in
level by 60 dB (RT60). The decay time varies in function
of the tank type, but it is normally on the order of 2 or 4
seconds.

• Delay Time: it is the time required for the arrival of the
early reflections. 30-40ms can be considered depending on
the tank type.

1https://www.amplifiedparts.com/tech-articles/
spring-reverb-tanks-explained-and-compared

• Number of Springs: Each type of tank my have 2 or 3
transmission springs. However, a transmission spring could
be composed of a chain of strings altering the decay time
and effect tone.

Usually the spring reverb module is interconnected within a
line-out connection referenced to +4dBu or -10dBV. However the
driver is not amplifying the input signal, so it is unary gain and no
gain factor is applied. Its main role is adapting the impedance be-
tween a typical line-out connection, which has an output impedance
from 100 to 600Ω, and the input impedance of the tank, which
might have between 8-100Ω. For impedance adaptation the driver
incorporates an input transformer that reduces the impedance that
the tank is seeing. So the driver should be designed to provide an
output impedance very low (optimally accomplishing Rs = RL /
10) for avoiding the signal loss effect in the transmission which
is determined by a voltage divider. For instance, if no adapta-
tion is provided and we assume 1V as input signal and the lowest
impedance values for Rs=100Ω and RL=8Ω, the signal loss would
correspond to -22.6dB, where us for Rs=100Ω and RL=100Ω the
loss is minimized to 6dB. However if the impedance adaptation is
applied and RS is defined by RL/10 (in case RL is equal to 8Ω, Rs
= 0.8Ω) the signal loss is optimized to 0.82dB.

Other EQ parameters such as bass and treble controls can be
introduced in the preamp, but they don’t need to be considered as
part of the reverberation time. Usually the input is at line level
signal and the driver helps to control and keep it. Nevertheless,
impedance adaptation is needed to avoid insertion loss, since the
spring tank presents a low input impedance and line outputs are
from 100 to 600Ω. Given the signal degradation introduced by the
spring tank, the output results in a low level signal, usually about
1 to 5 mV, so the preamp applies a gain factor about 50 to 60 dB to
recover a processed line level signal. The first spring reverb units
are vacuum tube preamp based, it may find transistor or op-amp
based units though.

Figure 2: Spring reverberation unit diagram.

The complex propagation of waves across springs causes dif-
ferent time of arrivals at each frequency band, sonically this intro-
duces a nonlinear behaviour dependent on the source and filters the
sound in the range from 100 Hz to 4kHz. The particular combina-
tion of electro-mechanical components and electronic parts of the
spring reverb shapes a unique sound signature that, while not ac-
curately representing acoustic reverberation, has influenced many
musical traditions and styles, among others: rock, reggae, dub and
funk.
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2.1. Spring Reverb Datasets

Specific to spring reverb, there are only two publicly available
datasets. The first one, provided by Martinez et al. [24], is derived
from the IDMT-SMT-Audio-Effects dataset [26], which consists
of individual 2-second dry notes that cover the common range of
electric bass and guitars. The wet samples are processed through
the Accutronics 4EB2C1B spring reverb tank, the dry input signal
is not mixed with the output. In total, the dataset includes 624 pairs
of dry and wet notes, of which test and validation samples corre-
spond to 5% each. All the recordings are downsampled to 16 kHz
and normalized in amplitude, a fade-out is applied in the last 0.5
seconds of the recordings. In this work, we refer to it as SpringSet.

In digital signal processing, the Nyquist-Shannon sampling
theorem states that the highest representable frequency is half the
sampling frequency. Therefore, the standard sampling rate of 44.1
kHz guarantees an artefact-free representation of frequencies up to
22.05 kHz. However, for deep learning in general, particularly in
the early stages of development, down-sampling and up-sampling
can be useful. While this reduces computing resources and training
time, the cost is limited spectrum, potential artefacts and incom-
patibility with higher sampling rates during inference, especially
in digital audio workstations (DAW).

This can be particularly crucial for reverb emulation, where
high frequencies define resonances and spatial perception. Rec-
ognizing this, the Electric Guitar Effects Dataset (EGFxSet) [27],
released in late 2022, provides dry-wet pairs for various guitar ef-
fects, including spring reverb. It offers 8,970 unique, five-second
annotated guitar tones with open-access availability and a sample
rate of 48 kHz, and 24-bit depth. For this research, we focus on
the "Clean" and "Spring-Reverb" subsets. The dataset utilizes a
CR60C digital reverb emulating an Orange Crush Pro 60 amplifier
with a 12" speaker. To capture spring reverb clips, the volume is
set at 50%, dry mix at 0%, and wet mix at 100%. The dataset isn’t
pre-split for training, validation and testing; each clean sample has
a corresponding wet version for all 12 effects.

Table 1: Audio features of the two datasets (mean values): Equiva-
lent Sound Level (LEQ), Pitch (Yin algorithm) and High Frequency
Content (HFC).

SpringSet EGFxSet

Feature dry wet dry wet

LEQ (dB) -14.33 -12.26 -21.51 -21.55
Pitch (Hz) 322.91 217.59 446.65 343.35
HFC 33.57 52.10 12.49 15.85

As Table1 depicts, the peculiar characteristics of each spring
reverb tank modify the input signal in a specific way that is re-
flected by the audio features computed on the two datasets with
the Essentia library [28]. For both, a diminished pitch is observed
due to the filtering introduced by the device. While a higher HFC
between the dry and the wet signals relates to the high-frequencies
resonances created by the device. As per the LEQ, in the SpringSet
there’s an attenuation of the processed audio that is compensated
for the EGFxSet.

Figure 3: Block diagram of the TCN architecture.

3. DNN MODELS

From a review of the literature on neural audio effects emerges
that convolutional neural network (CNN) models can be very ef-
fective for similar tasks [29, 30, 31] and at the same time there is
evidence on the effectiveness of ’recurrent’ type networks (RNN)
[32]. We therefore propose a comparison of five architectural pat-
terns that revolve around these two principles of operation and,
in some cases, attempt to optimise performance with hybrid-type
systems [33].

3.1. Temporal Convolutional Network

The Temporal Convolutional Network (TCN) presented by [29] is
an architecture specifically designed for processing sequential data
like audio signals. As shown in Figure 3, it consists of stacked con-
volutional blocks with exponentially increasing dilation factors.
This allows to capture both local and long-range temporal depen-
dencies within the input without a commensurate rise in compu-
tational complexity or the number of parameters. The first block
receives the input sequence and passes it through a TCN block,
transforming it into a specified number of channels. The interme-
diate blocks have an identical structure and simply transform the
input without changing the number of channels. Finally, the last
block maps the transformed features to the desired output chan-
nels. Each block employs 1D causal convolution, ensuring outputs
depends only on past and current inputs.

The Feature-wise Linear Modulation (FiLM) layer introduces
a mechanism for adaptive neural network behaviour through the
modulation of intermediate layer outputs, conditional on external
or learned information. The FiLM layer adjusts the output of con-
volutional layers by applying an affine transformation, whose pa-
rameters are generated dynamically based on a separate condition-
ing input. This allows the network to adapt its processing in a
context-dependent manner, tailoring its behaviour to specific char-
acteristics of the input signal or desired effects. Optionally, batch
normalization can be integrated within the FiLM layer to introduce
additional control over the feature distribution.

Following this, the architecture uses the PReLU (Parametric
Rectified Linear Unit) as its activation function [34]. Unlike the
standard ReLU, which nullifies negative values, the PReLU allows
a small gradient when the unit is inactive (i.e., for negative values).
This small gradient, determined by a learned parameter, ensures
that even "inactive" units can adapt during the training process,
reducing the risk of neuron "death" seen in some deep network
trainings with standard ReLUs. Additionally, there’s a skip con-
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nection (residual) added to the output of the convolution, which
helps training for deeper networks.

3.2. WaveNet

Figure 4 is the diagram of the second architecture implemented:
a simplified, feed-forward variant of the WaveNet architecture as
presented in [30]. It utilizes stacked dilated convolutional layers to
capture long-range dependencies within the audio signal. The dila-
tion factor increases exponentially with each stack within a block.
Unlike TCN’s single convolutional block per layer, WaveNet em-
ploys multiple "stacks" within each block, each using a separate
dilated convolution. This progressive increase in dilation allows
WaveNet to capture even wider contexts without losing resolution,
this comes at the cost of a higher computational complexity.

Figure 4: Block diagram of the feed-forward WaveNet architecture.

3.3. Gated Convolutional Network

The third convolutional architecture is the Gated Convolutional
Network (GCN), shown in Figure 5 and introduced by Comunità
et al. [31]. Similar to the other convolutional networks, this ar-
chitecture can be briefly described as a TCN that leverages the
power of dilated convolutions combined with gating mechanisms
to capture long-range dependencies without significantly increas-
ing computational costs. Dilation increases exponentially with
the layer depth, after reaching the maximum dilation at the fi-
nal layer, it resets and starts again, marking the beginning of a
new block. Each block features a single causal convolutional layer
(Conv1dCausal) followed by a FiLM conditioning layer and a gated
activation function. The gated mechanism within the GCN mod-
ulates the output of the convolutional layers, each one has two
convolutional operations. The first operation has its output chan-
nels doubled in size, and this output is split into two equal parts.
One part undergoes a Tan h activation, while the other undergoes
a Sigmoid activation. The element-wise product of these two ac-
tivations creates the gating mechanism, effectively controlling the
flow of information through the network. To maintain consistent
tensor sizes throughout the network and enable residual connec-
tions, zero-padding is added at the beginning of the tensor after
the gated operation. A mixing convolution of kernel size 1 follows
the gating mechanism to control the number of output channels.
The layer’s output is a sum of the original input (residual connec-
tion) and the result from the mixing convolution.

Figure 5: Block diagram of the GCN architecture.

3.4. Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a type of RNNs
introduced to address the problem of exploding and vanishing gra-
dients via a gating mechanism. This mechanism allows for se-
lective memory control, enabling the network to learn long-term
dependencies in data. Figure 6 shows the LSTM used is inspired
by the one used in [32] with some variations. At the input stage,
the convolutional layer, enhanced with a ReLU activation and max
pooling, serves as the initial feature extractor, preparing the in-
put for the RNN layer by highlighting important temporal features
and reducing dimensionality. The RNN cell offers a mechanism to
manage information flow within the network, making it efficient
for learning dependencies in time-series data. The FiLM layer
again plays a critical role by modulating the GRU outputs accord-
ing to conditional inputs, offering a mechanism for the model to
adjust its behaviour based on external signals. An optional skip
connections is incorporated to preserve information across layers
and improve learning dynamics.

3.5. Gated Recurrent Units

Similar to LSTMs, Gated Recurrent Units (GRUs) are RNNs, they
have a simpler architecture with only two gates: the update gate
and the reset gate. The first one controls how much of the previous
cell state is combined with the current input, and the second con-
trols how much of the previous cell state is discarded. GRUs are
generally less computationally expensive than LSTMs, but they
may not be as effective at learning long-term dependencies. Figure
6 shows the architecture implemented for this work, the first two
stages at the input are the same as the LSTM, but they are followed
by a max pooling layer before the GRU. The model concludes with
a convolutional output layer and a Tanh activation function.

4. EXPERIMENTS

In order to ensure clarity of results and ease of replicability: for
this purpose, a code base is shared to reproduce all experiments
with a Command Line Interface (CLI) and the relative documen-
tation 2.

2https://github.com/francescopapaleo/
neural-audio-spring-reverb
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Figure 6: Block diagrams of the RNN architectures: the LSTM (on
the left) and the GRU (on the right).

4.1. Experimental Design

The training process is implemented using PyTorch version 2.0.1 3,
which encompasses both the training and validation loops across
all models. For both datasets, 60% of the samples are used for
training, 20% for validation and the remaining 20% are reserved
for evaluation, with random splits. A combination of time and
frequency-domain loss functions, as detailed in [35], [36] and in
[37], is widely employed for modelling audio effects. Specifically,
Mean Absolute Error (MAE) [38], Error-to-Signal-Ratio (ESR)
[39] and Short-Time Fourier Transform (STFT) [40], either alone
or in combination, are commonly used as loss functions in simi-
lar tasks. The early experiments conducted in this work, aimed at
identifying the most effective loss function, revealed that a com-
bined loss of Smooth L1 [41] and Multi-Resolution STFT (MS)
was the optimal solution. The overall loss is given by:

L = LSmoothL1 + LSTFT (1)

The rationale behind the use of both a time and a frequency
domain loss is to ensure that the model not only captures the over-
all structure and envelope of the audio waveform, but also respects
the harmonic complexities in the spectral domain. Loss in the time
domain, represented by the smoothed MAE, is more sensitive to
phase discrepancies and temporal structures, while loss in the fre-
quency domain, represented by STFT, focuses on ensuring that the
spectral characteristics of the processed audio closely match those
of the original [33].

An initial learning rate of 0.01 is set in combination with the
use of the Adam optimizer and Reduce LR On Plateau as sched-
uler with patience of 10 epochs. The chosen scheduler reduces the
learning rate by one order of magnitude, after 10 epochs in which
the loss function after validation hasn’t improved. For data at 16
kHz, a batch size of 64 is optimal, while with the 48 kHz this has
to be reduced to 16, This difference also responds to the limited
computing resources available. A single Nvidia RTX A5000 with
24 GB of RAM and CUDA version 12.0 is used for the whole
experimental process.

For the evaluation of model performance, we use the ESR and

3https://github.com/pytorch/pytorch/tree/v2.0.1

Multi-Resolution STFT (MRSTFT), to measure the difference in
magnitude between the predicted and the target [30, 40]. As shown
in (2), the ESR is computed by dividing the absolute difference
between the true value and the predicted value by the magnitude
of the true value. The resulting ratio indicates how much the error
deviates from the true value, relative to the true value itself.

LESR =

∑N−1
i=0 |yi − ŷi|2∑N−1

i=0 |yi|2
(2)

where |y| is the magnitude of the true value (also called tar-
get) and |ŷ| is the prediction given by the neural network. The
denominator in the ESR normalises the loss with regard to the en-
ergy of the target signal, preventing it from being dominated by
the segments with higher energy.

Equation 3, shows the MRSTFT introduced by [40] is an ex-
tension of the STFT loss that aims to improve robustness and limits
potential biases.

LMRSTFT (ŷ, y) =
M∑

m=1

(lmSC(ŷ, y) + αlmSM (ŷ, y)) (3)

Where M is the total number of resolutions and α is a weight-
ing factor for the log magnitude loss. |y| and |ŷ| are, respectively,
the magnitude of the ground truth and of the prediction.

Since our work aims to achieve model performance suitable
for a real-time application, we include the Real-Time Factor (RTF)
among the metrics used during the evaluation: the time taken by
the neural network to output a prediction is divided by the length
of the input signal[42]. An RTF less than or equal to 1 indicates
that the system is employable in real time, on the other hand, a
value greater than 1 indicates a delay at the output.

4.2. Baseline Models

Quantitative metrics don’t always fit within predefined bounds:
when there’s no previous work on the same data or for a similar
task, it is difficult to establish without a range of possible values.
Consequently, we define and test two baseline models, built to as-
certain potential metric ranges, thus aiding the subsequent evalua-
tions of the model under comparison.

1. Naive Baseline (NB): This model emulates a prediction
that corresponds to the wet sample and a target replaced by
the dry sample. The ESR is computed between the dry and
wet signals of the dataset, which is equivalent to a system
that given an input returns the same input. The underlying
logic of this baseline is to provide a quantitative measure of
the inherent variance of the target device that we are mod-
elling.

2. Dummy Regressor (DR): It represents the upper boundary,
sometimes referred to as the "topline". It makes a random
prediction that is uncorrelated with the input and the target.
Metrics are computed between a target and the random ten-
sor (equivalent to white noise) that represents this baseline.

4.3. Results and Discussion

Results for both datasets are shown in Table 2, while all models
outperform the baseline approaches, a clear distinction emerges
between the two datasets.
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Figure 7: Waveforms and accumulated spectrum of the predicted
and the target audio for the GCN model.

Table 2: ESR, MRSTFT (referred to as MR) and RTF on test set
for all models, the lowest values highlighted in bold.

SpringSet EGFxSet

Model ESR MR RTF ESR MR RTF

GCN 0.90 0.96 0.131 0.72 0.74 0.014
GRU 1.10 2.02 0.222 1.16 1.43 0.066
LSTM 1.06 2.09 0.114 1.41 0.99 0.055
TCN 0.80 1.48 0.144 1.06 0.93 0.019
WaveNet 0.36 1.13 0.208 0.80 0.90 0.020
NB 1.40 1.90 - 1.12 1.84 -
DR 7.52 9.93 - 14.84 8.59 -

WaveNet achieves the lowest ESR at SpringSet, highlighting
its exceptional capability in capturing the intricacies of spring re-
verb at 16 kHz sampling rate. Remarkably, the GCN model demon-
strates competitive performance with SpringSet, and outperforms
in terms of MRSTFT error also offering a potentially faster pro-
cessing speed due to its simpler architecture compared to WaveNet.
At the EGFxSet dataset, the GCN depicts the lowest ESR and
MRSTFT, indicating its suitability for high-fidelity audio appli-
cations with a real-time processing constraint since it also exhibits
the lowest RTF across both sampling rates, making it a strong can-
didate for real-time audio processing tasks. WaveNet while deliv-
ering exceptional performance at SpringSet has the highest RTF,
indicating a potential need for optimization for real-time applica-
tions at higher sampling rates.

It is worth noticing that using the inference on CPU, it is pos-
sible to measure the time required by the models during testing to
process the data and compute the RTF, although this approach does
not guarantee an assessment of the deployment in a C++ frame-
work like JUCE, it is a rough estimation of the computational de-
mands posed by the model and allows a better tuning to improve
its performance and reduce latency for a real time implementation.

5. CONCLUSIONS

By examining a range of convolutional and recurrent neural mod-
els, this study highlights the intricate balance between computa-
tional efficiency and the accurate reproduction of acoustic phe-
nomena characterizing spring reverberation. Among the tested

architectures, the WaveNet model demonstrated superior perfor-
mance in terms of the ESR, particularly at a sampling rate of 16
kHz, underscoring the effectiveness of dilated convolutions in cap-
turing the temporal dependencies and nuances of reverberated au-
dio signals. Meanwhile, the GCN showed promising results at a
higher 48 kHz sampling rate, and surpasses all other models in
terms of MRSTFT indicating its potential for high-fidelity audio
effect modelling with real-time processing capabilities.

The metrics utilized in this study provide a quantitative assess-
ment of model performance. However, audio perception is inher-
ently subjective, and these metrics might not always correlate with
human perception. Future studies can involve more extensive per-
ceptual evaluations, where human listeners are involved to rate the
quality of the generated audio effects. Such assessments can offer
invaluable insights that purely quantitative metrics might miss.

Future work, to develop more accurate neural audio effects,
may involve collection of data specifically conceived for parame-
ters learning and further experimentation with TFiLM [43].
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