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ABSTRACT

This study investigates the potential of real-time inference of neu-
ral audio effects on Android smartphones, marking an initial step
towards bridging the gap in neural audio processing for mobile
devices. Focusing exclusively on processing rather than synthe-
sis, we explore the performance of three open-source neural mod-
els across five Android phones released between 2014 and 2022,

showcasing varied capabilities due to their generational differences.

Through comparative analysis utilizing two C++ inference engines
(ONNX Runtime and RTNeural), we aim to evaluate the computa-
tional efficiency and timing performance of these models, consid-
ering the varying computational loads and the hardware specifics
of each device. Our work contributes insights into the feasibility
of implementing neural audio processing in real-time on mobile
platforms, highlighting challenges and opportunities for future ad-
vancements in this rapidly evolving field.

1. INTRODUCTION

Neural audio is quickly becoming a staple in the field of digital
signal processing (DSP), thanks to major advances in both audio
processing and synthesis. This growth is largely driven by two key
developments in machine learning: the introduction of new deep
learning architectures that open up innovative approaches to DSP
and the improvement of inference engines that make it possible
to run neural models on a variety of devices. These engines are
designed to take advantage of device hardware to speed up cal-
culations, marking a significant step forward in smarter and more
adaptive audio processing techniques.

The rise of machine learning applications has notably influ-
enced the development of Android phones. Leading mobile man-
ufacturing companies have integrated specific hardware and soft-
ware features into their devices to support the real-time running
of complex neural models, both for generative Al and for DSP
applications. For example, Qualcomm has rolled out the Snap-
dragon 8 Gen 3 and X Elite chips, featuring a dedicated Hexagon
Neural Processing Unit' (NPU). These chips are designed to han-
dle trillions of operations per second, supporting a wide range of
neural models right on the device; this includes everything from
large language models to models for automatic speech recogni-
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tion. Google’s latest Tensor G3 chip® combines an ARM CPU
with a GPU and NPU, enabling it to run models that are signifi-
cantly more complex than those supported by earlier Pixel phones.
Both Google and Samsung are incorporating their own Al mod-
els into their smartphones, enabling features like real-time speech
processing and advanced image/video editing, showing a trend in
using neural processing technology to improve user experiences
with sophisticated DSP tasks. Moreover, Qualcomm and Google
have developed software tools (Neural Processing SDK® and Neu-
ral Networks API*, respectively) to make it easier to deploy neural
models on their devices.

Despite the advances in hardware and software for neural pro-
cessing on mobile devices, the literature reveals a noticeable gap in
the application of neural models for musical purposes on Android
platforms. Existing research often confines the application of au-
dio models to speech detection, natural language processing and
classification tasks (e.g., [1, 2]). Furthermore, a considerable por-
tion of the literature predominantly focuses on video and image
processing [3, 4, 5], with detailed benchmarks of neural models
for computer vision [6], but scant attention to musical applications
such as full-duplex processing (audio effects) and synthesis on An-
droid devices.

In light of this observation, our work initiates the effort to
bridge this gap by examining the potential for real-time inference
of neural audio effects on Android phones. Our investigation in-
volves testing three open-source models across five different de-
vices using two C++ inference engines. This analysis aims to eval-
uate and compare the computational and temporal performance
of these models, taking into account the hardware and software
specifics of the devices involved.

2. RELATED WORK

Research into neural models has extended to their application on
embedded audio boards, reflecting the growing interest in deploy-
ing advanced audio processing capabilities on compact and spe-
cialized devices. Pelinski et al. [7] offer an in-depth examination
of the processes involved in deploying real-time neural models on
the Bela embedded audio platform, highlighting the challenges
of cross-compiling inference engines and providing templates to
streamline this process. Similarly, Stefani et al. [8] turn their at-
tention to the Raspberry Pi and Elk Audio OS, comparing the per-
formance of four inference engines (Tensorflow Lite, TorchScript,
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ONNX Runtime and RTNeural) across three variants of the same
model, differing in complexity and the number of trainable pa-
rameters. Notably, both studies primarily focus on prediction and
classification models, rather than delving into audio processing or
synthesis.

In the broader landscape of neural audio models, the literature
has seen significant advancements over the past few years. Pi-
oneering models such as SampleRNN [9] and WaveNet [10] have
set benchmarks for synthesizing raw audio waveforms with high fi-
delity, catering to both speech synthesis and musical audio genera-
tion. Subsequent developments, like GANsynth [11], have pushed
the envelope further by optimizing for real-time performance, thus
facilitating faster synthesis suitable for live applications. More-
over, innovations like RAVE (Realtime Audio Variational autoEn-
coder) [12] underscore the potential for efficient, high-quality au-
dio synthesis on less powerful hardware, expanding the horizons
for real-time audio generation technologies.

Of particular relevance to our work is the research focused on
the neural modeling of audio effects. Damskagg et al. [13] delve
into modeling audio distortion circuits with deep neural networks,
examining three different guitar pedals. By adopting a black-box
approach, they leverage a lightweight variant of the WaveNet ar-
chitecture designed specifically to emulate the distinctive sonic
characteristics of these devices, based on their input and output
signals. Martinez-Ramirez et al. [14] introduce a novel deep learn-
ing model for simulating time-varying audio effects, such as cho-
rus and tremolo, through the use of convolutional and recurrent
neural networks. This model aims to offer a versatile solution ca-
pable of accommodating various audio modifications, encompass-
ing both linear and nonlinear changes. Further expanding on this
theme, the same authors [15] conduct a comprehensive study on
the application of different deep neural network architectures for
virtual analog modeling of nonlinear effects, including tube ampli-
fiers, transistor-based limiters and the dynamic components of the
Leslie speaker.

3. MATERIALS AND METHODS

3.1. Phones

Our experimental setup included five Android phones, chosen to
span a range of release years from 2014 to 2022, thereby encap-
sulating a wide array of generational capabilities. The first phone
(Phone 1) is an LG G2 Mini, released back in 2014 and equipped
with the Qualcomm Snapdragon 400 chipset; this technology fea-
tures a quad-core 1.2 GHz Cortex-A7 CPU. Phone 2 is a Zenfone 2
Laser released by Asus in 2016, powered by the Qualcomm Snap-
dragon 615 chipset; while still relatively low-tier, it offers a more
performative octa-core CPU (quad-core 1.7 GHz Cortex-A53 and
quad-core 1.0 GHz Cortex-A53). Phone 3 is a 2018 Xiaomi Mi 8
Lite, mounting the mid-range Qualcomm Snapdragon 660 chipset;
this chipset features an octa-core CPU setup, with four Kryo 260
cores clocked at 2.2 GHz for performance tasks and four Kryo
260 cores clocked at 1.8 GHz for efficiency tasks. Phone 4 is a
Samsung Galaxy S21+ from 2021, a powerful device running the
Qualcomm Snapdragon 888 chipset, with an octa-core CPU that
includes one Kryo 680 core clocked at up to 2.84 GHz, three Kryo
680 cores clocked at up to 2.42 GHz and four Kryo 680 cores
clocked at up to 1.8 GHz for efficiency. The last and most re-
cent phone (Phone 5) is a 2022 Asus Zenfone 9 powered by the
Qualcomm Snapdragon 8+ Gen 1 chipset; this high-end processor
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features an octa-core CPU configuration, including one Cortex-
X2 core running at up to 3.19 GHz for peak performance, three
Cortex-A710 cores running at up to 2.75 GHz for balanced perfor-
mance and four Cortex-A510 cores running at up to 1.80 GHz for
efficiency. Table 1 summarizes the specifics of the five devices.

While all devices were tested in a full-duplex setting, utilizing
the line-in/line-out via the headphone combo jack, it’s noteworthy
that the Xiaomi and Samsung models required a USB-C adapter
due to the absence of a combo jack.

3.2. Models

Three open-source neural models, distinguished by their increas-
ing complexity and computational load—measured in floating point
operations (FLOPs) per sample—were selected for this study. These
models were re-implemented in Google Colab notebooks’, facil-
itating the export of weights as a JSON file for RTNeural and as
an .onnx file, ensuring compatibility with our chosen inference en-
gines (see the next subsections). The first neural network archi-
tecture under scrutiny (model A) is the Auto-Guitar Amp model
proposed by Wright et al [16]; it is composed of a Long Short-
Term Memory (LSTM) and a dense layer, set with an input size of
1 (current input sample), hidden size of 20 units and output size of
1 sample. Model B is the ED (encoder-decoder) model for emu-
lating hardware compressors presented by Simionato and Fasciani
[17]; the enconder is composed of two 1D convolutional layers and
two dense layers, while the decoder comprises an LSTM and two
dense layers. Our implementation matches the configuration rec-
ommended by the authors: the encoder uses as input the latest 32
samples and 4 conditioning parameters, while the decoder is set to
64 hidden units. This model works on a block basis, for it outputs
a buffer of 16 processed samples per each call. Model C is Gui-
tarLSTM, a variation on the architecture from [16] as proposed by
Bloemer®; it features two 1D convolutional layers, an LSTM and
an output dense layer, in our implementation set to an input size of
5 samples, 32 hidden units and output size of 1 sample.

Additionally, two “abstract” models designed in PyTorch were
introduced to simulate varying computational load scenarios with-
out emulating any specific audio effect (more details in Section
4.2). The first abstract model, referred to as the baseline model, is
composed of two dense layers with an output size of 1 and a neg-
ligible number of FLOPs. The second model, called the topline
model, is designed to assess performance under a large computa-
tional load’ in a block-based scenario. It consists of a series of
two dense layers with an output size of 16 and a number of FLOPs
comparable to Model C, the largest of our test pool.

Further details on all models can be referenced in the cited pa-
pers and links. Table 2 lists the FLOPS per sample in each model,
while Table 3 illustrates the FLOPs formulae we used for each type
of layer employed.

3.3. Audio Environments

Our investigation utilized two distinct audio environments to as-
sess the performance of the neural models under different con-
ditions. The first environment was a bespoke Android audio app

Shttps://drive.google.com/drive/folders/

1611iVYccRiQ5IFHqqusx63gpHyngZwfRh?usp=sharing
bhttps://github.com/GuitarML/GuitarLSTM
TLarge in the context of our pool of audio effect models.
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Table 1: Tested phones’ details. The native buffer size of the embedded audio codec was obtained by inspecting Android’s Audio Flinger

details.
Alias Phone Year Qualcomm Chipset Cores | Max Clock | Native Buffer
Phone 1 LG G2 Mini 2014 Snapdragon 400 4 1.2 GHz 240
Phone 2 | Asus Zenfone 2 Laser | 2016 Snapdragon 615 8 1.7 GHz 240
Phone 3 Xiaomi Mi 8 Lite 2018 Snapdragon 660 8 2.2 GHz 192
Phone 4 Samsung S21+ 2021 Snapdragon 888 8 2.84 GHz 96
Phone 5 Asus Zenfone 9 2022 | Snapdragon 8+ Gen 1 8 3.19 GHz 96

Table 2: Output sizes and FLOPs per sample of each model.

Alias Model Output Size | FLOPs/sample
Model A | Auto-Guitar Amp 1 3,400
Model B ED 16 7,332
Model C GuitarLSTM 1 20,416
Baseline - 1 16
Topline - 16 20,480

Table 3: Formulae employed to calculate the FLOPs per each
layer; i = input size, o = output size, u = hidden units, s = stride,
k = kernel size, f = filters.

Layer FLOPs
Dense 2x1Xxo0
Sigmoid 4xo0
LSTM 8X (i+u)xu
ID Conv | [i/s] x kx fx2

project (app). The app was crafted with flexibility in mind and fea-
tures an optimized full-duplex audio engine powered by the Oboe
library. One of the key design principles was its ability to load
and run code for various audio applications, including the neural
models in question, through a straightforward C++ API. This de-
sign choice allowed for the effortless running and testing of differ-
ent models by simply switching the C++ source files via CMake,
without the need for recompilation in Java or Kotlin.

We also employed LDSP, a C++ mobile audio environment in-
troduced by Zappi and Tapparo [18] (low-level). Unlike the app,
LDSP offered a platform for evaluating the models’ performance
at a lower level, directly interfacing with the hardware without the
mediation of the Android audio stack. This environment was par-
ticularly valuable for understanding how the models would per-
form in scenarios closer to the metal, where the overhead of the
Android system is minimized. The C++ API designed for the app
was compatible with LDSP’s API, enabling us to test identical au-
dio code across both environments seamlessly.

3.4. Inference Engines

RTNeural [19] and ONNX Runtime® were selected as our infer-
ence engines. This choice was influenced by their documented
success in previous studies involving embedded Linux audio boards
(e.g., [8] and the follow-up development of [20]), where they demon-
strated efficient performance and robustness. Moreover, these two
engines offer very distinct approaches to neural model inference.
RTNeural specializes in efficient, real-time neural network infer-

8nttps://github.com/microsoft/onnxruntime.git

ence for audio with a focus on speed and low overhead, but re-
quires a complete redesign of models and supports a limited set
of neural layers. As opposed, ONNX Runtime offers broad direct
compatibility and flexibility for a very wide variety of model ar-
chitectures across several platforms. Both engines were integrated
into the app and low-level environment, with RTNeural compiled
at build time and ONNX Runtime linked as a pre-built dynamic
library, and set to default delegates for ARM CPUs.

To execute the models consistently in both the app and the low-
level environment, we adopted two approaches: for RTNeural, we
re-coded each model using its C++ API, enabling the loading of
pre-trained model weights through JSON files. For ONNX Run-
time, we exported the models from Python to the .onnx format,
allowing them to be loaded and run at runtime.

3.5. Tests

We conducted two primary tests to evaluate the models under var-
ious configurations, i.e., different combinations of phones, envi-
ronments and inference engines. The first test aimed to identify
the smallest buffer size for each configuration that could operate
without inducing underruns. In full-duplex applications, both an
input and an output buffer are utilized, which may differ in size.
Given that audio apps operate within the Android audio stack, they
inherently involve two additional buffering layers—mixer (Audio
Flinger) and audio HAL [18]. However, our focus was on the out-
put buffer size, as it represents the primary computational bottle-
neck for model inference across all configurations. While the sizes
of other buffers could affect round-trip latency, analyzing this as-
pect was outside the scope of our paper. We aligned our buffer
size tests with integer multiples of each phone’s native buffer size
(Table 1); as described in [21], in Android apps, this enhances the
efficiency of sample exchange with the audio driver/audio HAL by
minimizing the number of bursts per each buffer. Should smaller
buffer sizes prove viable, we further tested common powers of two
(e.g., 128, 64). Notably, as the baseline and topline (i.e., abstract)
models were not designed for training or meaningful processing
and maintained randomly initialized weights, their outputs were
disregarded during testing. Underruns were assessed based on a
passthrough audio stream instead.

In the second test, we executed each configuration once for a
duration of 10 seconds and recorded the inference times, calculat-
ing the mean and standard deviation values. All devices and appli-
cations were standardized to run at a 48 kHz sample rate, resulting
in logs of 480,000 samples for each test run.

The full source code of the app environment, including the
integration of inference engines, can be found here: https://
github.com/victorzappi/LDSPlite.git. Two dedicat-
ed repositories host the app test projects using ONNX Runtime
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models’ and RTNeural models'.

The equivalent low-level codebase (LDSP) is accessible here:
https://github.com/victorzappi/LDSP.git. LDSP
test projects can be found here: ONNX Runtime models'' and
RTNeural models'?.

It is important to note that we were unable to root the Sam-
sung S21+ and the Asus Zenfone 9 due to recent changes in the
bootloader unlocking policies by both manufacturers. Rooting is
essential for the operation of LDSP and, as such, we are unable to
provide low-level measurements for these two devices within our
current findings.

4. RESULTS

4.1. RTNeural

Table 4 collects the smallest buffer sizes that RTNeural was capa-
ble of supporting in real-time in each phone-model configuration.
These results include values for both the app and the low-level en-
vironment.

It is noteworthy that, for the app, on Phone 1 and Phone 2
the choice of the buffer size was fixed to twice as the native value.
These two devices run Android versions below 8.1 (SDK < 27) and
hence the Oboe library employed in the app behaves as a wrap-
per for OpenSLES, which does not allow for the selection of ar-
bitrary buffer sizes. As opposed, in the other more recent phones,
Oboe can leverage the more advanced AAudio library that sup-
ports buffer size selection, but only down to the native buffer size.

The low-level environment does not impose any software lim-
itation on the chosen parameters and allows for reaching the hard-
ware limits of the devices. For example, the low-level buffer sizes
reported for Phone 1 and Phone 3 coincide with the smallest sizes
that these devices can support in a passthrough scenario, i.e., when
no processing occurs.

Table 5 displays the mean and standard deviation of the infer-
ence times per sample, measured in each RTNeural configuration.
As expected, all real-time configurations sport inference times be-
low the sampling period, which is around 20.833 ps for the tests’
sample rate. Although this is a good first indicator of the perfor-
mance of each test, a couple of considerations are necessary to
correctly interpret these data. First, the incidence of underruns de-
pends on the collective inference times within each buffer, more
than on the time mean across the full duration of the test. In other
words, the actual time constraint is represented by the buffer pe-
riod, defined as buf fersize/samplerate. Hence, spikes in the
inference times that are even way above the sampling period mark
might not spoil real-time performance, as long as their occurrence
is sparse enough. This explains why some time entries in the table
where a large standard deviation may push the inference time quite
close to the sampling period are still capable of running in real-
time. Figure 1 illustrates the case of Phone 4-Model C. Conversely,
Phone 1-Model A showcases a quite low mean and standard devi-
ation measurements when running within the app, yet several un-
derruns were reported; this was due to computational time spikes

https://github.com/victorzappi/LDSPlite—ONNX.
git
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that were moderately high and limited in number, but appearing in
short series within the same buffer. Second, the use of the buffer
period as real-time time constraint is quite optimistic, for a portion
of this time window must be allocated to sample data formatting
(to comply with the audio format used by the driver/codec), data
transfer (to/from the driver/codec) and—in the case of the app—
extra mixing and buffering stages (see Section 3). This was re-
flected in our underruns/real-time measurements.

Inference Times per Sample (Phone 4-Model C / RTNeural)
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Figure 1: Top: inference times for the full 480,000-sample run of
the configuration Phone 4 - Model C. Middle and bottom: two
close-ups on single 96-sample buffers, showing that very high in-
ference time spikes are unlikely to occur consecutively in this con-
figuration, with other calls within the same buffer around 14 ps,
keeping the total inference time below the buffer period (2000 ps).

4.2. ONNX Runtime

Table 6 shows the buffer sizes supported by ONNX Runtime for
all models, while timing results for models A, B and C are show-
cased in Table 7 (top). The considerations made in the previous
subsection about buffer size selection (in the app and the low-level
environment) and the interpretation of the timing results still hold
up here.

As noted in Table 7, in a few instances the app was not able to
log the inference times due to crashes occurring before the conclu-
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Table 4: Smallest underrun-free buffer sizes with RTNeural; “-” means that the configuration could not run in real-time.
Model A Model B Model C
app  low-level | app low-level | app  low-level
Phone 1 - 64 480 64 - -
Phone 2 | 480 240 480 240 - -
Phone 3 | 192 128 192 128 384 128
Phone 4 | 96 n/a 96 n/a 96 n/a
Phone 5 | 96 n/a 96 n/a 96 n/a
Table 5: Mean and standard deviation of inference times (us) per sample with RTNeural, calculated across 480,000 samples. Real-time
configurations highlighed in green.
Model A Model B Model C
app low-level app low-level app low-level
Phone 1 | 10.149 (2.320)  10.033 (0.745) | 14.631(0.999) 14.536 (0.352) | 46.066 (7.636) 45.003 (5.033)
Phone 2 | 4.621 (1.302) 3.447 (1.423) | 10.092 (2.840)  7.537 (0.981) 20.72 (2.326)  18.454 (2.714)
Phone 3 | 2.054 (1.331) 2.044 (1.022) 5.225 (0.977) 4.905 (0.674) | 13.255(2.726) 12.069 (2.144)
Phone 4 | 4.913 (4.449) n/a 11.627 (2.325) n/a 14.105 (5.821) n/a
Phone 5 | 0.070 (0.377) n/a 0.797 (0.347) n/a 2.057 (0.652) n/a

sion of the runs. This was observed for the heavy Model C on the
three older phones, as well as for Model A when running on Phone
2. These crashes are likely due to inference times so large that they
consistently exceeded the real-time constraints of each buffer pe-
riod. Excessive delay could disrupt the synchronization between
the input and output audio streams and the callback mechanism of
the underlying audio driver, leading to the application’s instability.

Preliminary data analysis underlined that, in general, ONNX
Runtime struggles to run the audio effect models in real-time, within
both the app and the low-level environment. However, upon closer
inspection it is possible to note how Model B manages to reach
real-time performance in several configurations and at reasonably
large buffer sizes. The main difference between this model and
Models A and C is its block-based nature, characterized by an out-
put size of 16 samples per each inference. In other words, the
model is called 16 times less often than Models A and B when pro-
cessing the same continuous input stream. This detail, combined
with the way larger inference times observed for Models A and
C, suggests that the ONNX Runtime library suffers from a con-
spicuous call overhead, whose impact is more visible with smaller
output sizes—due to a larger number of calls within each buffer
period.

We decided to measure this overhead, by designing and testing
the baseline model characterized by an output size of 1 and a neg-
ligible number of FLOPs (see Table 2). Likewise, we introduced
the topline model to assess how ONNX Runtime performs under
a large computational load, but in a more favorable block-based
scenario. Inference time results for these two models are available
in the bottom part of Table 7.

5. DISCUSSION

5.1. Cutting-edge and Legacy Mobile Neural Processing

In our evaluation, it’s evident that all the smartphones tested are
capable of executing the audio effect models in real-time. Consis-
tent with expectations, the more recent devices particularly excel,
often delivering inference times significantly below the real-time
thresholds. This performance aligns with the rapid technological
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advancements in the mobile phone sector, where each year brings
new chipsets designed for increasing speed, scalability and com-
patibility with contemporary computational demands, like mobile
gaming and artificial intelligence applications.

Notably, some of the devices we tested, like Phones 4 and 5,
are equipped with hardware accelerators specifically tailored for
neural network inference. These include the Hexagon Tensor Ac-
celerator, optimized for quantized models, and the Adreno GPU,
which excels with floating-point models—both found in the Snap-
dragon Series 8 [5]. However, it’s crucial to underline that our
experiments exclusively utilized CPU delegates for both RTNeu-
ral and ONNX Runtime, hence bypassing these advanced accel-
erators. These delegates can though rely on CPU parallelization
capabilities, including the utilization of ARM’s NEON vectorized
instruction set, to process the neural audio effects.

Surprisingly, our findings also indicate that even significantly
older smartphones, like Phones 1 and 2'°, can effectively run neu-
ral audio effects in real-time. While the heaviest model proved
too demanding for these older devices, they still managed to sup-
port the remaining models with commendable reliability. Though
the number of viable configurations on these older phones is some-
what restricted and inference times are generally longer when com-
pared to their newer counterparts, their performance remains ro-
bust. This suggests that, given the right conditions—such as the
choice of an appropriate inference engine and audio environment
tailored to the model’s requirements—these older devices could
find a new lease on life as dedicated neural audio processors, up-
cycled specifically for this task [18].

5.2. Beyond the Boundaries of Audio Apps

The comparison between the low-level environment and the app-
based environment yields a notable distinction in performance,
with the former consistently outperforming the latter. Inference
times in the low-level setting are almost always substantially lower,
a difference that becomes particularly pronounced on devices op-
erating older Android versions, such as Phones 1 and 2. For in-
stance, Phone 2 exhibits a reduction in inference times by more

13 At the time of writing, these are 10 and 8 years old respectively!
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Table 6: Smallest underrun-free buffer sizes with ONNX Runtime; “-” means that the configuration could not run in real-time
Model A Model B Model C Baseline Topline
app low-level | app low-level | app low-level | app low-level | app  low-level
Phone 1 - - - - - - - - 480 64
Phone 2 - - 480 240 - - - - 480 240
Phone 3 - - 384 128 - - - 128 192 128
Phone 4 - n/a 96 n/a - n/a 192 n/a 96 n/a
Phone 5 | 96 n/a 96 n/a - n/a 96 n/a 96 n/a

Table 7: Mean and standard deviation of inference times (us) per sample with ONNX Runtime, calculated across 480,000 samples. Real-
time configurations highlighted in green; “(crash)” marks configurations that could not complete the log due to excessive computational

load.
Model A Model B Model C
app low-level app low-level app low-level
Phone 1 | 162.811 (14.187) 158.188 (11.084) | 21.181 (1.597) 21.208 (1.343) (crash) 699.073 (35.017)
Phone 2 (crash) 115.80 (17.198) | 14.821 (2.060) 13.374 (2.024) (crash) 352.449 (42.645)
Phone 3 71.438 (6.022) 72.873 (7.943) 8.630 (0.970) 9.242 (1.639) (crash) 210.274 (17.788)
Phone 4 | 45.787 (205.695) n/a 14.820 (3.331) n/a 108.287 (289.971) n/a
Phone 5 15.578 (3.190) n/a 2.402 (2.051) n/a 32.122 (23.438) n/a
Baseline Topline
app low-level app low-level

Phone 1 | 60.264 (11.343) 54.706 (11.987) | 8.295(3.477) 5.366 (0.697)

Phone 2 (crash) 27.041 (6.199) | 4.607 (3.179) 2.848 (0.960)

Phone 3 | 30.257 (11.097)  17.898 (3.096) | 4.752(2.395) 1.924 (0.671)

Phone 4 | 16.420 (9.147) n/a 4.791 (1.005) n/a

Phone 5 4.085 (2.710) n/a 0.376 (0.459) n/a

than 50% in certain configurations, underscoring the efficiency of
the low-level environment.

Even on newer devices, where the reduction in inference time
might not be as drastic, the low-level environment demonstrates
its value through more stable operation and the ability to utilize
smaller buffer sizes. Phone 3 serves as a prime example of this
benefit, where, despite not showing a significant decrease in infer-
ence time, the system stability and flexibility in buffer size selec-
tion are markedly improved.

This aligns with findings previously reported in the literature,
where the superiority of low-level environments in terms of per-
formance and flexibility has been noted [18]. The enhanced per-
formance, combined with the greater range of buffer size options,
not only facilitates the operation of more computationally inten-
sive models but also enables the integration of neural processing
within a broader spectrum of effects and control chains. However,
it’s important to acknowledge the limitations associated with low-
level environments, such as LDSP, which necessitate root access
(i.e., superuser privileges) and specific customizations to be fully
operational.

Yet, beyond the specific settings required for its operation,
LDSP does not fundamentally differ much from Oboe in its ap-
proach to handling audio data. Essentially, LDSP operates by by-
passing certain software layers that become redundant in the con-
text of running dedicated, high-priority audio applications, such as
unnecessary mixer buffering. This streamlining contributes signif-
icantly to the performance enhancements observed in the low-level
environment compared to the app-based approach. These findings
suggest that with relatively minor architectural adjustments to the
Android audio stack, it’s possible to substantially enhance the au-
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dio, and particularly neural processing, performance across a wide
spectrum of Android devices. This implies that the potential for
dramatic performance improvements is not limited by the hard-
ware capabilities of the devices but can be unlocked through opti-
mized software design.

5.3. Choosing the Right Engine

Perhaps the most interesting insights arise from the comparative
analysis of RTNeural and ONNX Runtime. Across all configura-
tions, the three audio effect models we examined consistently per-
formed better with RTNeural. This disparity is largely attributable
to the call overhead associated with ONNX Runtime, which can
be approximated on every phone by the inference times measured
for the baseline model'*. Except for the most advanced device
(Phone 5), the mean inference time is perilously close to or ex-
ceeds the sampling period, rendering ONNX Runtime generally
less suitable for models operating on a per-sample basis due to the
significant overhead.

Interestingly, when models operate on a block basis (such as
Model B), ONNX Runtime demonstrates improved outcomes, oc-
casionally achieving real-time performance. Yet, even in these
scenarios, RTNeural outperforms ONNX Runtime by a significant
margin, making it the preferable option for implementation.

At first glance, these findings might prompt the dismissal of
ONNX Runtime for real-time inference of neural audio models
similar to those we examined. And this may seem a plausible ex-

14"With only 16 FLOPs, the baseline model’s computational times are
negligible, indicating that its run-time is primarily due to the call overhead.
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tension of the results obtained by Stefani et al. in embedded classi-
fication tasks [8]. However, the performance of the topline model
prompts a reassessment. Despite a computational complexity com-
parable to Model C, the most demanding among our audio effect
models, the topline model runs in real-time across all devices and
both environments. Remarkably, its inference times not only vastly
undercut those of any other model evaluated with ONNX Runtime
but are also on par with, or even superior to, the performance of
the lightest model (Model A) under RTNeural. This efficiency is
achieved despite the topline model’s FLOPs per sample ratio being
nearly six times higher.

The topline model’s simple architecture—consisting of just
two dense layers—might explain its unexpected efficiency, sug-
gesting that even CPU delegates can effectively accelerate such
configurations. Nonetheless, these findings hint that in embed-
ded applications ONNX Runtime could be particularly well-suited
for block-based models with significant computational demands,
whereas RTNeural shines when processing single-sample data and
lighter models.

6. CONCLUSION AND FUTURE WORK

This study embarked on an exploration of neural audio effects pro-
cessing on Android smartphones, leveraging both RTNeural and
ONNX Runtime across a variety of devices and environments. We
demonstrated that all tested phones, including models up to 10
years old, are capable of running neural audio effects in real-time,
with newer devices showing exceptionally low inference times.
Our analysis underscored the superior performance of the low-
level environment over traditional app-based environments, high-
lighting the potential for enhanced audio processing capabilities
with minor architectural adjustments in the Android audio stack.
The comparative study between RTNeural and ONNX Runtime
revealed a significant performance edge for RTNeural, due to the
lower call overhead. Yet, ONNX showed very encouraging results
with larger models operating on a block basis.

The evolving landscape of neural audio and multimodal Al
underscores the critical need for advanced neural audio proces-
sors. Responsive audio input/output is becoming increasingly vital
and there is a pressing need for more open and flexible develop-
ment frameworks on Android—i.e., lower level. While Google’s
AAudio represent a step in the right direction (see also [18]), our
findings suggest that there is significant room for improvement.
Enhancements in the coding and execution pipeline for audio apps
could lead to substantial gains in performance and usability for
newer devices, as well as democratize high-quality neural audio
processing across a broader range of smartphones, even those that
are not equipped with specialized hardware accelerators.

Looking ahead, we plan to delve into the potential of utilizing
GPU and NPU acceleration for neural operations on newer phone
models through specialized delegates, like NNAPI. This approach
promises to unlock new capabilities in neural audio processing,
by enabling the use of more advanced architectures that other-
wise could not run in real-time. Our preliminary engagement with
NNAPI has yielded mixed results and it was not included in this
work. It necessitates a deeper analysis of various factors that could
influence performance.

Moreover, our examination of ONNX Runtime will extend to
larger and more complex models that carry out actual audio pro-
cessing using advanced architectures. This exploration will also
consider TensorFlow Lite, which has shown similar performance
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in related studies [8], to provide a comprehensive view of the best
tools for neural audio effects processing.

Lastly, neural synthesis represents an exciting frontier for our
future investigations. While many technical considerations overlap
with those addressed in this study, the unique demands of synthesis
models regarding architecture, computational load and real-time
control mechanisms present a distinct research domain [12, 22].
Expanding our work into neural synthesis will further our under-
standing of the possibilities and challenges in advanced audio pro-
cessing on mobile devices.
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