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ABSTRACT

This research presents a novel hybrid audio inpainting approach
that considers the diversity of signals and enhances the reconstruc-
tion quality. Existing inpainting approaches have limitations, such
as energy drop and poor reconstruction quality for non-stationary
signals. Based on the fact that an audio signal can be considered
as a mixture of three components: tonal, transients, and noise, the
proposed approach divides the left and right reliable neighborhoods
around the gap into these components using a structured sparse
decomposition technique. The gap is reconstructed by extrapo-
lating parameters estimated from the reliable neighborhoods of
each component. Component-targeted methods are refined and
employed to extrapolate the parameters based on their own acous-
tic characteristics. Experiments were conducted to evaluate the
performance of the hybrid approach and compare it with other state-
of-the-art inpainting approaches. The results show the hybrid ap-
proach achieves high-quality reconstruction and low computational
complexity across various gap lengths and signal types, particularly
for longer gaps and non-stationary signals.

1. INTRODUCTION

Audio inpainting involves the recovery of missing or degraded parts
of an audio signal based on its reliable segments [1]. Suppose
y ∈ RN be an audio signal with N samples, and the indices of its
missing or degraded samples are known (referred to as unreliable
samples). The recovered signal s should be the same as the original
signal in the reliable part, in other words, it should belong to the
following set Γy:

Γy = {s ∈ RN : MRs = MRy} (1)

where MR ∈ RN×N is a square diagonal matrix whose k-th diag-
onal value is 1 if the k-th sample of the original signal is reliable,
otherwise it is 0, which means MRy contains all reliable samples.
In this study, we focus on compact gaps that are well separated
from one another, rather than random small gaps.

Various approaches proposed to address this issue will be pre-
sented in chronological order, each leveraging distinct assumptions
about the underlying audio structure. The first approach relies
on the assumption that the audio signal is relatively stationary
around the unreliable region. This method analyzes the reliable
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neighborhood using autoregressive (AR) modeling and extrapo-
lates the missing samples based on the estimated autoregressive
coefficients [2, 3]. Another approach is based on the concept of
sinusoidal modeling, which assumes that the audio signal can be
decomposed into a sum of time-varying sinusoids (partials). By
analyzing the behavior of these partials in the reliable neighbor-
hood, this method predicts their trajectories within the unreliable
segment [4, 5]. A third approach exploits sparsity, which assumes
that signals can be efficiently represented using only a few sig-
nificant coefficients within a transformed domain, typically the
time-frequency domain. This approach aims to construct a signal
that matches the original signal in the reliable parts and exhibits
a sparse representation around the unreliable region in the chosen
domain [1, 6, 7, 8]. Recently, a data-driven approach has proven
effective in solving this task, especially for longer gaps [9, 10, 11].
This approach utilizes deep neural networks to find statistical audio
structures (priors) from a large amount of training data and fill the
gap based on these priors. In this research, we concentrate on the
modeling approaches that rely solely on information from reliable
samples around the gap for inpainting.

While the sparsity-based approach offers promising results in
many scenarios, there are still challenges that degrade the recon-
struction quality. One challenge arises when dealing with non-
stationary signals, such as those containing fast time-varying com-
ponents like modulations or inherently nonsparse elements like
noise. Sparsity-based methods may encounter difficulties in accu-
rately representing non-stationary signals around the gap, which
could lead to the selection of inappropriate atoms and artifacts in
the unreliable region (Figure 4b). The length of the gap is another
challenge. For gaps longer than 50 milliseconds, sparsity-based
methods often have energy drops in the unreliable region [7] be-
cause the partial trajectories are not maintained properly. These
challenges also exist with other approaches.

To address these challenges, a structured representation of
the sound can be incorporated as prior knowledge to guide the
inpainting process. This structured approach, indirectly utilized in
previous works on additive synthesis and autoregressive modeling,
provides a way to combine these existing techniques within the
sparse representation framework. A natural prior is to rely on
the usual structure of sound signals, which considers them as a
mixture of three components: tonal, transients, and noise [12].
The tonal part can be generalized as the slow-varying deterministic
part, which is mostly stationary (or cyclo-stationary) in the longer
term. It is usually made of time-varying sinusoids (also known as
partials). The transients represent the fast-varying deterministic
part, which consists of components that have a short duration, a
wide spectral bandwidth, and are usually located at the beginning or
end of a sustained sound. The noise refers to the stochastic part of
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the signal. This model provides a structured view of various audio
signals and is widely used in the fields of additive synthesis [12, 13]
and audio encoding [14]. However, it is rarely explored in the
context of audio inpainting.

In order to separate these three components from the mix-
ture, a technique known as structured sparse decomposition can
be employed. This technique builds upon the idea of sparse de-
composition, but incorporates prior knowledge from the signals
into the decomposition process [15]. By leveraging the known
characteristics of each component, structured sparse decomposition
can effectively isolate them within the audio signal. This separation
allows for the application of component-specific methods for audio
inpainting.

In this research, we propose a hybrid audio inpainting approach
to improve the perceived quality of the reconstruction while con-
sidering the diverse characteristics of audio signals. By combining
the strengths of sparsity-based decomposition for efficient repre-
sentation and tailored methods for each component, this hybrid
approach aims to overcome the limitations of individual methods
and achieve robust and high-quality reconstruction across a wider
range of audio signals.

The rest of this paper is organized as follows: Section 2 de-
scribes the proposed hybrid approach for audio inpainting and
elaborates on each technique used in detail. Section 3 analyzes
our hybrid approach and compares it with other state-of-the-art
techniques through various experiments. Section 4 summarizes this
paper, outlines the strengths and limitations of our approach, and
addresses some possibilities for future research.

2. METHODOLOGY

2.1. Overview

The proposed hybrid inpainting approach views an audio signal
as a mixture of three components. The input signal is first pre-
processed (Sect. 2.2), then decomposed into tonal (Sect. 2.3), tran-
sient (Sect. 2.4), and noise components. Tonal and noise compo-
nents are reconstructed independently by integrating and refining
previous methods (Sect. 2.5 for tonal and Sect. 2.6 for noise). The
final output is a combination of the reconstructed components with
post-processing (Sect. 2.7). Figure 1 summarizes the overall pro-
cess of our approach. Interested readers can find all the details of
each proposed techniques at the accompanying website [16].

2.2. Pre-processing

Pre-processing entails shortening and aligning the input signal for
downstream tasks. The minimum length of the shortened signal is
determined based on the offset, window size, and time shift of the
window [17]. In order to better estimate time-varying signals, we
will set the length longer than the minimal support. The center of
the gap is aligned in the midpoint of two adjacent Gabor windows,
which refers to the “half” offset configuration in [7].

2.3. Estimation of tonal part

After the pre-processing, the next step is to decompose the signal
into a deterministic part and a residual part based on structured
sparse decomposition. In this case, our extracted tonal component
will be a set of atoms that reflects the tonal structure of a sound.
This technique builds upon the idea of sparse decomposition, which
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Figure 1: The overview structure of the proposed hybrid approach.
The number in parentheses represents the corresponding section.

aims to represent or approximate an audio signal as a linear combi-
nation of simple waveforms (atoms) selected from a set of atoms
(dictionary) [18]. That leads to the sparse approximation problem,
which can be formalized as an optimization problem. In the context
of audio inpainting, the problem can be written as:

ẑ = argmin
z

∥z∥0 subject to ∥MRy −MRΦz∥22 ≤ ϵ (2)

x̂ = argmin
x

∥ΦHx∥0 subject to ∥MRy −MRx∥22 ≤ ϵ (3)

where Φ : CP → CN is the synthesis operator, z ∈ CP is a vector
of atoms, ΦH : CN → CP is the conjugate transpose (Hermitian
transpose) of the synthesis operator Φ and is referred to as the
analysis operator, signal x : RN is the cosparse representation of
signal y [19], x̂ is the estimation of x, and ∥x∥0 is the ℓ0 “norm” of
x. The first equation refers to the synthesis variant of the inpainting
problem, and the second equation refers to the analysis variant.

Although finding the optimal solution to this non-convex prob-
lem is NP-hard [20], a suboptimal solution is usually built as an
approximation based on available algorithms. One approach called
relaxation is to replace the ℓ0 “norm” with the ℓ1-norm, which is
a convex approximation of the ℓ0 “norm” for sparse decomposi-
tion [18]. The relaxation approach can be expressed in the following
unconstrained form:

argmin
x

{
1

2
∥MRx−MRy∥22 + λ∥ΦHx∥1

}
(4)

where ∥x∥1 represents the ℓ1-norm of x, and λ is a parameter
controlling the strength of the constraint.

A shrinkage operator needs to be defined to solve this problem,
which is able to integrate structured information in the decompo-
sition process. This technique, known as social sparsity, involves
selecting atoms based on the coefficients within their respective
neighborhoods V [21]. The neighborhood V(k) of an atom with
index k is defined as a set of atoms that are near the atom k. The
neighborhood can be of an arbitrary shape and can be weighted for
more flexibility. In this research, we use the Persistent Empirical
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Wiener (PEW) shrinkage operator [22]:

Sλ(zk) = zk ·max

(
1− λ2

∥Vkz∥22
, 0

)
(5)

where z is a vector that contains all atoms, Vk is a diagonal matrix
made of 0 and 1 such that Vkz select all atoms in the neighborhood
of atom zk.

Instead of using a constant 2D kernel as the neighborhood
weights for the 2D convolution to calculate the coefficient sum of
each atom’s neighborhood in the time-frequency plane [22, 23],
we define the neighborhood with two median filters. The median
filter is a non-linear spatial filter that sets the coefficient based on
the median value among the defined neighbors [24]. In order to
better separate the tonal component from the mixture, it is desirable
to both suppress the sparsity in the time direction and promote
the sparsity in the frequency direction. Therefore, we propose to
jointly determine the time-frequency (TF) neighborhood Vtf using
neighbors in both the time and frequency directions, as illustrated
in Figure 2. The TF neighborhood weight wk of atom zk can be
formulated as:

wk = med{Vt
kz} − γmed{Vf

kz} (6)

where Vt
kz selects the atoms in the time neighborhood Vt(k), Vf

kz
selects the atoms in the frequency neighborhood Vf (k), γ is a
parameter controlling the sparsity along frequency, and med{x} is
the median of x.

time

fr
e
q
u
e
n
cy

Vf (k)

Vt(k)
zk

Figure 2: The neighborhood configuration for tonal decomposition.
The dark solid circle represents the center atom zk, the green
horizontal area represents the time neighborhood Vt(k), and the
red vertical area represents the frequency neighborhood Vf (k).

The Loris-Verhoeven (LV) algorithm [23] to solve the problem
in Eq. (4) is employed. The sparsity parameter λ is automatically
tuned based on the time-varying spectral flatness of the signal. The
procedure is described on the accompanying website [16].

2.4. Estimation of transient part

After obtaining the residual signal without most of the deterministic
part, the next step is to further decompose it into a transient and a
stochastic component. The same structured sparse decomposition
method as in Section 2.3 is applied, except that the TF neighborhood
Vtf is simply the frequency neighborhood Vf . The decomposition
result is the transient part of the residual signal. The residual of the
decomposition is considered to be the stochastic part, which will be

analyzed and reconstructed in a subsequent process. Although the
transient part is not synthesized in this research, it is still valuable to
consider it as it improves the analysis of the stochastic component.

2.5. Reconstruction of tonal part

The tonal component resulting from the sparse decomposition
mainly results from a superposition of partials, which are tem-
porarily evolving sinusoids. Therefore, techniques for analyzing
and re-synthesizing partials can be applied to them (from sets of
atoms originating from the non-gap regions) and to reconstruct
the tonal part in the gap region. In practice this is achieved by
performing the following steps: first, signals from the right and
left sides of the gap are analyzed to extract partials, which are
further processed to be more reliable and consistent; second, the
corresponding partials on both sides of the gap are matched and
predicted over the gap; finally, the resulting partials are synthesized
to obtain the reconstructed signal ŷtonal.

2.5.1. Partial tracking

Partials are extracted by a technique called partial tracking that
aims to build partial trajectories by linking the spectral peaks across
frames according to their parameters. For this, we rely on Neri
and Depalle’s method [25], which treats partial tracking as a com-
binatorial optimization problem to obtain the optimal connections
between peaks by minimizing connection costs. We refine this
method by specifically converting partial frequencies from Hz to
equivalent rectangular bandwidth (ERB) scale, and by adding an ex-
tra term in the cost function that apply a constrain on the frequency
derivative differences between spectral peaks.

Let’s now describe the assignment problem as presented in [25].
Suppose that the first set of peaks S1 contains N1 elements, and
the second set of peaks S2 contains N2 elements. The assignment
problem can be formalized as follows:

minimize
N1∑
i=1

N2∑
j=1

CijXij

subject to
N1∑
i=1

Xij = 1 j = 1, . . . , N2

N2∑
j=1

Xij = 1 i = 1, . . . , N1

(7)

where Cij is the cost of assigning element i in set S1 to element j
in set S2, Xij is a binary variable indicating the assignment, which
is set to 1 if element i is assigned to element j and 0 otherwise. The
optimal solution of the assignment problem can be obtained by the
Hungarian algorithm [26].

The spectral peak parameters are estimated using the distribu-
tion derivative method (DDM) [27]. Continuity constraints between
the midpoints of consecutive frames are introduced by incorporat-
ing the frequency, amplitude, and frequency derivative differences
between the peaks at the midpoint of the frames in the cost function.
However, a fixed frequency threshold in Hz may make tracking
partials in high frequencies difficult, since the frequency variation
is greater at high frequencies than at low frequencies. Therefore,
we use the ERB scale frequency difference instead. The frequency
(in ERB scale), amplitude, and frequency derivative differences
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between peak i in frame k − 1 and j in frame k are defined as:

∆f
[k]
ij = ERB(f

[k−1]
i [H/2])− ERB(f

[k]
j [−H/2]) (8)

∆a
[k]
ij = a

[k−1]
i [H/2]− a

[k]
j [−H/2] (9)

∆β
[k]
ij =

f ′i
[k−1]

[H/2]

ERB
(
f
[k−1]
i [H/2]

) −
f ′j

[k]
[−H/2]

ERB
(
f
[k]
j [−H/2]

) (10)

where H is the hop size, f [k]
i [n] and a

[k]
i [n] are the instantaneous

frequency and log-amplitude of partial i in frame k, respectively.
The definition ERB(f) = 1000

24.7×4.37
ln( 4.37f

1000
+ 1) is from [28].

These constraints lead to two types of assignments: useful as-
signments and spurious assignments. Useful assignments are those
that satisfy the continuity constraints, while spurious assignments
are those that do not satisfy them and are thus ignored in the partial
tracking process.

The cost of a useful assignment from peak i in frame k − 1 to
peak j in frame k is defined as:

C
useful[k]
ij = 1− exp

−
∆f

[k]
ij

2

2σ2
f

−
∆a

[k]
ij

2

2σ2
a

−
∆β

[k]
ij

2

2σ2
β

 . (11)

The parameters σ2
f , σ2

a, and σ2
β are the variances of the fre-

quency, amplitude, and normalized frequency derivative distribu-
tions, respectively, which are computed as:

σ2
χ =

ζ2χ
2 ln(δtrack − 2)− 2 ln(δtrack − 1)

(12)

where χ is a placeholder that represents f , a, and β, ζf , ζa, and ζβ
are predefined thresholds that control the range of the frequency
and amplitude matching, respectively. δtrack is the parameter that
controls the trade-off between useful and spurious assignments.
The cost of a spurious assignment is defined as:

Cspurious
ij = 1− (1− δtrack)Cuseful

ij . (13)

To obtain both useful and spurious assignments using the Hun-
garian algorithm, the cost matrix can be defined as:

Cij = min{Cuseful
ij , Cspurious

ij }. (14)

Consequently, assignments Xij = 1 with Cij = Cuseful
ij are

considered as useful assignments, while those with Cij = Cspurious
ij

are categorized as spurious assignments. If a useful assignment
is not connected to any previous trajectories, this assignment is
considered as a born partial. If a previous trajectory does not
correspond to any useful assignments in the current slice, the partial
is considered as dead. The Hungarian algorithm is used to obtain
the optimal assignment matrix by providing the cost matrix C [25].

2.5.2. Partial modeling and prediction

A general model and prediction method is proposed in this sec-
tion, which will be extensively used and applied to the subsequent
processing of partials.

Observations of sound signals indicate that partials may exhibit
both trends and periodicities, or only one of them. For instance,
a violin can play portamento and vibrato simultaneously, which
not only involves a gradual increase or decrease in frequency on a
macro scale but also introduces periodic fluctuations in frequency

on a micro scale. Therefore, the long-term trend and short-term
periodicity should both be taken into account in the model, which
leads to a two-step analysis.

In order to predict the trend component, a linear regression of
the frequency (or amplitude) of the partial is performed by calcu-
lating the coefficient of determination (R2). If R2 is greater than
a threshold, the trend exists, and the model is used to predict its
value. If it’s less than or equal to the threshold, the trend is non-
existent, and the trend component is set to 0. A large R2 indicates
the periodicity component is non-existent.

Burg’s autoregressive model is employed to predict the peri-
odicity component [29]. The synthesized partial is then obtained
by adding the trend prediction to the periodicity prediction. This
allows both long-term and short-term variations in partial frequency
and amplitude to be captured and rendered.

2.5.3. Partial reconnection

Ideally, a partial should correspond to an actual part of the sound.
In practice, however, the “partials” that we analyze from the algo-
rithms tend to be shorter and more fragmented, which is a distortion
compared to the actual partials. These extracted “partials” reduce
the accuracy of the prediction, since they carry very limited infor-
mation. To address this issue, we propose a method to reconnect
these fragmented partials based on their frequency and amplitude
continuity.

The proposed method can be applied to the partials that fall
into the following two scenarios. The first scenario is when the two
partials overlap in time by a small amount. The second scenario is
when the two partials do not overlap in time, but are close together,
which means that there is a small gap between their end and start
points. Figure 3 illustrates these two cases accordingly.
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time
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q
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n
cy

(b) no-overlap

Figure 3: Two scenarios of potential partial connection. The solid
lines represent extracted partials, the solid points represent data
points (per frame), and the dashed lines with gradient color repre-
sent potential partial connections.

The costs of connection are then calculated for each pair of
partials. Suppose the long partial is denoted by pi and the other
partial is denoted by pj . We define the cost for connecting pj to pi
as:

Cconnect
p̂i←pj = δconnect

d̄f (p̂i, pj)

ζconnectf

+(1− δconnect)
d̄a(p̂i, pj)

ζconnecta

(15)
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where ζconnectf and ζconnecta are the thresholds for frequency and
amplitude, 0 ≤ δconnect ≤ 1 is a parameter that controls the
influence of the two metrics on the cost. d̄f (p̂i, pj) and d̄a(p̂i, pj)
represent the normalized Euclidean distances in frequency (ERB
scale) or amplitude (dB scale) between two partials pi and pj in
the range of pj , which requires the frequency and amplitude of pi
to be mostly extrapolated using the partial model of Section 2.5.2.
We use the definition of normalized Euclidean distance from [5]:

d̄f (p̂i, pj) =
∥ERB(f̂i)− ERB(fj)∥2

/√
Npj

1 + σ{ERB(f̂i))}+ σ{ERB(fj)}
(16)

d̄a(p̂i, pj) =
∥âi − aj∥2

/√
Npj

1 + σ{âi}+ σ{aj}
(17)

where p̂i refers to the prediction of partial pi, f̂i and âi are the
(predicted) frequency and amplitude of partial pi in the range of
partial pj , Npj is the length (in frames) of partial pj , and σ{x} is
the standard deviation of x.

The merged partial with minimal connection cost (Cconnect)
is determined only if the minimal cost is less than 1. If all costs
are greater than 1, the long partial is unable to connect to any other
partials. The selected partial is then merged to the long partial. If
it overlaps, crossfading is used in the overlapping area to smooth
the transition. If it does not overlap, it is simply concatenated to
the long one. Once merged, the shorter partial is removed from the
list. The process is repeated until all valid partials are processed.
The reconnection method can reduce the artificially high number of
partials, and results in a more accurate and consistent representation
of the signal.

2.5.4. Partial matching

The next step is to determine which partial near the gap’s left bound-
ary should be connected to which partial near the gap’s right bound-
ary in order to form a merged partial. To achieve this, a method for
matching two partials before and after the gap is proposed.

First, all partials with enough length (more than a threshold
lmatch
min ) that are near the gap are selected as candidates for matching.

Then, all candidate partials around the gap region are extrapolated
in the gap region using the prediction method described in Sec-
tion 2.5.2. The prediction in amplitude extrapolation does not use
amplitude parameters from semi-reliable frames1.

Next, the normalized Euclidean distances (defined in Section
2.5.3) between the left and right predictions for each pair of candi-
date partials are calculated. A cost matrix based on the normalized
Euclidean distances is constructed as follows, similar to the cost
matrix for partial tracking:

Cij = min{Cmatch
ij , Cmismatch

ij } (18)

and

Cmatch
ij = 1− exp

(
−
(
d̄a(p̂i, p̂j)

)2
2σ2

a

−
(
d̄f (p̂i, p̂j)

)2
2σ2

f

)
(19)

Cmismatch
ij = 1− (1− δmatch)Cmatch

ij . (20)

Finally, the Hungarian algorithm in [25] is employed to deter-
mine the optimal matching. This matching indicates which partials
should be connected across the gap.

1A semi-reliable frame is defined as a frame in which the portion of the
signal being analyzed contains unreliable samples.

2.5.5. Partial extrapolation

After matching the partials near the gap, further extrapolation of
these partials is required for inpainting. All partials involved in the
partial matching process are further partitioned into three groups:
matched partials, unmatched born partials, and unmatched dead
partials.

The proposed general partial prediction method is employed
for extrapolating all frequency trajectories. However, for the am-
plitude extrapolation, different strategies are applied to the three
groups of partials. The matched partials are interpolated using our
partial prediction method. The unmatched born partials are further
separated into two types based on their slope of the trend line calcu-
lated from the general partial prediction method. Interested readers
can find the details process and figures about the strategies at the
accompanying website [16].

The phase is reconstructed in the same way as the phase inter-
polation method in [5], which is based on the method of [30] and
further spreads the phase error over the whole gap. The signal ŷtonal

with all partials is reconstructed using the synthesis method in [30].

2.6. Reconstruction of the noise part

To analyze the stochastic part in order to reconstruct the noise
from the residual, the region close to the boundary of the gap is
set as unreliable. Because the residual resulting from the sparse
decomposition of the tonal part may not be accurate enough near
the boundary, and may leak some energy of the tonal part to the
residual signal.

We use Burg’s AR model to estimate the power spectral density
(PSD) of the left and right reliable neighborhoods that consist of
noise [31]. Two noise signals that have the same PSDs as the
left and right reliable neighborhoods’ are generated by filtering
a normalized Gaussian noise with linear prediction coefficients
calculated from Burg’s method. Then, a cosine window is used to
crossfade these two noise signals to obtain a smooth transition.

2.7. Post-processing

The complete reconstructed signal ŷrec is obtained by superimpos-
ing the tonal signal ŷtonal and the noise signal ŷnoise together. In
order to keep the reliable part of the original signal unchanged, only
the gap region will be replaced by the reconstructed signal, with a
short crossfade at the boundaries of the gap to suppress potential
discontinuities.

3. EXPERIMENTS AND RESULTS

In the following two experiments, we compare the reconstruction
quality of our hybrid approach (referred to as Hybrid) with four
state-of-the-art inpainting methods: the analysis variant of SPAIN
method (A-SPAIN) [6], the weighted Chambolle-Pock method
(w-CP) [7], the iteratively reweighted Chambolle-Pock method (re-
CP) [7], and the frame-wise Janssen method (Janssen) [2]. The
first three methods are based on sparse decomposition, and the last
method is based on AR modeling. All sparsity-based methods use
the half offset configuration. The window sizes (from 2800 to 8400
samples) and hop sizes (1/4 of the window sizes) are determined
based on the length of the gaps. Other parameters are set as the
same values in [7]. For the Janssen method, we set the number
of iterations to 20. For all signals used in the experiments, the
sampling rate is 44.1 kHz.
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Two metrics that are used to evaluate the quality of the recon-
structed signals for the proposed hybrid inpainting approach and
other methods. The first metric is the signal-to-noise ratio (SNR),
which is defined as:

SNR(y, ŷrec) = 10 log10
∥y∥22

∥y − ŷrec∥22
(21)

where y and ŷrec represent the original signal (without gaps) and
the reconstructed signal, respectively. A higher SNR value indi-
cates a better reconstruction of the audio signal. In the following
experiment, the SNR is computed only in the gap region.

The second metric is a perceptual metric called objective dif-
ference grade (ODG), which measures the perceptual similarity
between the original and reconstructed signals [32]. The ODG cor-
responds to the subjective difference grade obtained from subjective
listening tests, which ranges from 0 to –4 and can be interpreted
as imperceptible, perceptible but not annoying, slightly annoying,
annoying, and very annoying, respectively. We use the PEMO-Q
method to calculate the ODG, which has an advanced auditory
model based on a modulation filterbank and demonstrates high
prediction accuracy [33]. In addition, we record the elapsed time
for each inpainting method to produce results.

In the first experiment, we demonstrate the adaptability and
flexibility of our hybrid approach on handling two non-stationary
signals. The first example is a synthesized sound with quadratic
chirps, random exponentially damped sinusoids, and added noise
(with a noise level of –20 dB), and the second is a soprano recording
with vibrato from the Sound Quality Assessment Material (SQAM)
dataset [34]. The gap length is 50 milliseconds for both signals.
The reconstruction results using the proposed hybrid approach,
A-SPAIN, and Janssen for the two test signals are presented in
Figures 4 and 5, respectively. The figures for other methods are at
the accompanying website [16].

As for the synthesized signal, w-CP (SNR = –6.38 dB, ODG =
–2.12) and re-CP (SNR = –7.08 dB, ODG = –2.37) fail to reconstruct
the tonal (chirp) part, and the re-CP method discards the noise in
the gap. At the same time, A-SPAIN (Figure 4b) (SNR = –1.18 dB,
ODG = –1.50) and Janssen (Figure 4c) (SNR = –1.31 dB, ODG
= –2.11) cannot adapt to the variations of frequencies in the gap
due to their stationary assumptions, leading to frequency jumps and
the “freezing” of noise. However, the hybrid approach (Figure 4a)
(SNR = 4.23 dB, ODG = –0.76) successfully captured the features
from the reliable neighborhoods and accurately predicted both tonal
and noise components for this signal.

As for the soprano signal with vibrato, w-CP (SNR = –3.37
dB, ODG = –1.28) and re-CP (SNR = –2.39 dB, ODG = –2.35)
failed to inpaint the tonal component with modulation. Meanwhile,
A-SPAIN (Figure 5b) (SNR = 0.46 dB, ODG = –1.04) and Janssen
(Figure 5c) (SNR = 2.67 dB, ODG = –1.00) fail to connect the
correct partials. The hybrid approach (Figure 5a) (SNR = –3.85 dB,
ODG = –2.30) shows the most similar trajectories as the original
audio signal with the correctly inpainted partials with modulation
and captures some of the noise.

In the second experiment, we compare these methods quantita-
tively using six recordings with different characteristics from the
SQAM dataset. Each signal has 8 gaps at random positions.

The evaluations of different audio inpainting methods under
three metrics are shown in Figure 6. In terms of SNR, when the gap
length is lower than 50 ms, the hybrid approach does not have the
same good SNR as other methods. However, it starts to outperform

other methods (except re-CP) for gaps longer than 50 ms. The re-
sults in terms of ODG is similar, except that the cutoff is at 100 ms.
The re-CP method achieve the best SNR for gaps longer than 50 ms,
but it has worst ODG for gaps longer than 25 ms. Furthermore, as
for the running time, the sparsity-based methods (A-SPAIN, w-CP,
re-CP) and AR-based model (Janssen) have an increasing runtime
when the gap length grows, and Janssen’s runtime increases expo-
nentially. Our hybrid approach, unlike other compared methods,
are insensitive with gap length.

From the results of first experiment, both sparsity-based and
AR-based methods failed in reconstructing incorrect partial trajec-
tories, but for different reasons. For the sparsity-based methods
(A-SPAIN, w-CP, and re-CP), although a long window might reduce
the energy loss in the gap, time-varying partials will be analyzed as
smoothed stationary atoms, resulting in a reconstruction that looks
like a jump from the left reliable part to the right reliable part with
a crossfade rather than a continuity within the gap region. The AR-
based method (Janssen) benefits from an increased window size,
thus better capturing the underlying temporal relationships within
the signal, such as modulations. However, it is difficult to predict
the long-term trend of partial parameters using an AR model.

The degradation of the reconstruction quality of our hybrid
approach may be attributed to the following reasons. First, it is
difficult to spread the phase error when synthesizing the partials
when gap is short, which leads to a more pronounced discontinuity
and lowers the ODG. Since we did not use the information within
the semi-reliable frames to extrapolate the partial parameters, the
phase of the reconstructed signal in the gap region may vary from
the original signal, resulting in a reduced SNR, even though they
are similar in terms of perception. Moreover, since the preset pa-
rameters are used to inpaint all types of signals, the partial matching
method sometimes mismatch two partials that represent different
notes together. Fine-tuning parameters for partial tracking and
matching methods based on signal type and gap length can improve
the accuracy of these methods. In future research, it is possible to
incorporate a harmonicity constraint in order to enhance robustness
in this situation.

The proposed hybrid approach includes a large number of pa-
rameters that need to be flexibly adjusted to different types of
signals to obtain better reconstruction quality. A detailed descrip-
tion and explanation of the parameters as well as experimental
results are available at the accompanying website with parameters’
information, audio excerpts, supplemental figures, and MATLAB
implementation [16].

4. CONCLUSION

This paper proposes a hybrid audio inpainting approach that takes
into account the diversity of audio signals. This approach solves the
inpainting problem in a structured way as it decomposes the signal
into tonal, transient, and noise components and reconstructs them
separately using refined component-targeted methods with various
controlling parameters for fine-tuning the behaviors of the methods.
Results show that the proposed approach is flexible and adaptive
with various lengths of gaps, especially for signals with medium
gaps (50–150 ms) and non-stationary components. Furthermore,
our hybrid approach scarcely increases the running time as the gap
length grows. Future work may reconstruct the transient component
in the gap. Moreover, other audio degradations, such as clipping and
bandlimiting, may be reconstructed with the three-layer structured
audio processing approach.
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Figure 4: Comparison of reconstruction of audio inpainting methods for synthesized chirps and exponentially damped sinusoids with added
noise. The area between the two red dashed lines represents the unreliable region.
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Figure 5: Comparison of reconstruction of audio inpainting methods for the soprano recording with vibrato. The area between the two red
dashed lines represents the unreliable region.
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[6] Ondřej Mokrý, Pavel Záviška, Pavel Rajmic, and Vítězslav
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[7] Ondřej Mokrý and Pavel Rajmic, “Audio inpainting: Re-
visited and reweighted,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 28, pp. 2906–2918,
2020.

[8] Tomoro Tanaka, Kohei Yatabe, and Yasuhiro Oikawa, “Phase-
aware audio inpainting based on instantaneous frequency,” in
Proceedings of 2021 APSIPA Annual Summit and Conference,
Tokyo, Japan, 2021, pp. 254–258.

[9] Andrés Marafioti, Nicki Holighaus, Piotr Majdak, and
Nathanaël Perraudin, “Audio inpainting of music by means
of neural networks,” in Proceedings of the Audio Engineering
Society 146th Convention, Dublin, Ireland, 2019.

[10] Eloi Moliner and Vesa Välimäki, “Diffusion-based audio
inpainting,” Journal of the Audio Engineering Society, vol.
72, no. 3, pp. 100–113, 2024.

[11] Federico Miotello, Mirco Pezzoli, Luca Comanducci, Fabio
Antonacci, and Augusto Sarti, “Deep Prior-Based Audio
Inpainting Using Multi-Resolution Harmonic Convolutional
Neural Networks,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 32, pp. 113–123, 2024.

[12] Tony S. Verma and Teresa H. Y. Meng, “Extending spec-
tral modeling synthesis with transient modeling synthesis,”
Computer Music Journal, vol. 24, no. 2, pp. 47–59, 2000.

[13] Charturong Tantibundhit, J. Robert Boston, Ching-Chung Li,
John D. Durrant, Susan Shaiman, Kristie Kovacyk, and Amro
El-Jaroudi, “Speech enhancement using transient speech com-
ponents,” in Proceedings of the 2006 IEEE International Con-
ference on Acoustics Speed and Signal Processing (ICASSP),
Toulouse, France, 2006, vol. 1, pp. 833–836, IEEE.

DAFx.7

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

394



Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

10 25 50 100 150
Gap length (ms)

2

4

6

8

10

12

14

16

18

SN
R

 (d
B)

Hybrid
A-SPAIN
w-CP
re-CP
Janssen

(a) SNR

10 25 50 100 150
Gap length (ms)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

O
D

G

Hybrid
A-SPAIN
w-CP
re-CP
Janssen

(b) ODG

10 25 50 100 150
Gap length (ms)

1

2

5

10

20

50

100

200

500

Ti
m

e 
(s

)

Hybrid
A-SPAIN
w-CP
re-CP
Janssen

(c) Time

Figure 6: Comparison of audio inpainting methods under different gap lengths in terms of SNR (lower are better), ODG (higher are better),
and runtime. The runtime of Janssen exceeds the boundary at a gap length of 25 ms and keeps growing as the gap length increases.

[14] Laurent Daudet and Bruno Torrésani, “Hybrid representations
for audiophonic signal encoding,” Signal Processing, vol. 82,
no. 11, pp. 1595–1617, 2002.

[15] Kai Siedenburg and Monika Dörfler, “Structured sparsity
for audio signals,” in Proceedings of the 14th International
Conference on Digital Audio Effects (DAFx), Paris, France,
2011, pp. 23–26.

[16] Eto Sun, “Hybrid Audio Inpainting Approach,” https:
//etosphere.github.io/hybrid-audio-inpai
nting-approach/, 2024.

[17] Pavel Rajmic, Hana Bartlová, Zdeněk Průša, and Nicki Ho-
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