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ABSTRACT

This paper presents a deep learning approach to parametric time-
frequency parameter prediction for use within stereo upmixing al-
gorithms. The approach presented uses a Multi-Channel U-Net
with Residual connections (MuCh-Res-U-Net) trained on a novel
dataset of stereo and parametric time-frequency spatial audio data
to predict time-frequency spatial parameters from a stereo input
signal for positions on a 50-point Lebedev quadrature sampled
sphere. An example upmix pipeline is then proposed which utilises
the predicted time-frequency spatial parameters to both extract and
remap stereo signal components to target spherical harmonic com-
ponents to facilitate the generation of a full spherical representa-
tion of the upmixed sound field.

1. INTRODUCTION

Audio upmixing can be described as the process of generating ad-
ditional channels of audio data when the original signal contains
fewer channels than the target reproduction system. Many of the
upmix algorithms in the literature provide channel-based upmix-
ing as they aim to generate additional signals to directly drive ad-
ditional loudspeakers in a known configuration [1, 2, 3, 4, 5, 6, 7],
such as 5.1, or by using methods such as (VBAP) [8] to upmix
to arbitrary 2D or 3D configurations [3]. Within this context, up-
mix algorithms can be more simply defined as generating a higher
number of output channels from a smaller number of input chan-
nels. For example, the program material may consist of a stereo
recording where the target system is a 5.1 configuration and as
such requires five full-range signals and one band-limited low-
frequency signal. This paper proposes a scene-based approach to
upmixing using stereo to B-format upmixing as an example ap-
plication based on a deep learning approach to the prediction of
time-frequency spatial parameters which can be utilised as a part
of a novel upmixing algorithm. Scene-based audio usually refers
to methods which spatially encode a sound field into a number of
specified channels, which collectively describe the spatial charac-
teristics of the sound field and can later be decoded to a chosen
loudspeaker configuration.
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2. RELEVANT BACKGROUND

Upmixing can be broadly classified into one of two categories.
The first is upmixing as decoding, where an algorithm upmixes or
decodes multi-channel content that has been previously encoded
[9]. For instance, Dolby Pro-Logic encoding/decoding can encode
4-channel, 5-channel, and 7-channel surround sound into a two-
channel matrix encoded signal that can itself be decoded to retrieve
an approximation of the original multi-channel signals [10]. These
algorithms are effective as the encoded input signal often contains
signal cues such as relative channel phase, which can be used to
aid the upmix process. The second, blind upmixing, is where addi-
tional channels are generated based solely on analysis of the input
signal. As the vast majority of stereo content has not been down-
mixed from existing multi-channel content, the method proposed
in this paper can be considered as belonging to the latter category.

Many stereo upmixing methods decompose a stereo signal into
direct signal components and diffuse signal components, some-
times also referred to as the primary and ambient components re-
spectively, by first transforming the signal into the time-frequency
domain using techniques such as Short-Time-Fourier-Transform
(STFT) [1, 4, 5, 11, 12]. Decomposition in the time-frequency do-
main enables more effective separation of temporally overlapping
sources. Direct components are defined as those signal compo-
nents that are highly correlated with existing channels and diffuse
components are those signal components that have low correlation
with the existing channels [13]. For a detailed review of existing
direct and ambient decomposition methods see [14].

Several machine learning approaches to upmxing have been
presented in recent years, although they have predominately fo-
cused on channel-based methods. Ibrahim and Allam [13] ap-
proach the task of direct-diffuse composition as a classification
problem, training a feed-forward Neural Network (NN) to classify
each complex valued time-frequency tile as either direct or diffuse.
When used as part of an upmixing system to upmix from stereo to
a quad array, 10 out of the 11 listeners preferred the NN method
above traditional methods such as those proposed in [6] and [1], as
well as achieving the highest signal to distortion ratio which was
tested on each of the extracted direct and ambient components.

Park et. al. [7] proposed a deep neural network (DNN) to
upmix from stereo to 5.1 within the MPEG-H 3D framework [15].
A DNN was trained using log-spectral magnitudes of quadrature
mirror filter subbands to predict the center and surround channels
from the input stereo signals. The input signals are then mapped in
the subband space to the center and surround channels where they
are transformed back into audio signals via quadrature mirror filter
synthesis. The approach is based on the assumption that the center

DAFx.1

< >

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

428

https://dafx24.surrey.ac.uk
mailto:daniel_turner@cle.creative.com
https://dafx23.create.aau.dk/
mailto:damian.murphy@york.ac.uk
http://creativecommons.org/licenses/by/4.0/


Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

channel is some combination of the left and right channels and the
surround channels are derived as some amount of the difference
between two channels.

The method proposed in [2], utilises two DNNs, with one
trained to perform direct-diffuse decomposition and the other to
render the diffuse component. Both networks are trained to jointly
minimise the Mean Squared Error (MSE) between the magnitude
spectra of the original and the upmixed/decoded five-channel sig-
nal as well as minimising the loss for the Inter-Channel Level Dif-
ference (ICLD). The network predicts spectral weights which are
then multiplied with each frequency bin in the stereo signal and
serve as a mask to separate the direct and diffuse components. In
all cases, the current methods are concerned with deriving signals
to directly drive additional loudspeakers for use within channel-
based upmixing.

There are, however, some limitations to the current approaches
for stereo upmixing, particularly around the directional estima-
tion of components. Stereo signals traditionally only account for a
source’s lateral position, providing insufficient information for tra-
ditional methods to discern its elevation or whether it is positioned
in front or behind the microphone capture array. It is the prac-
tice of stereo signals being reproduced over frontally placed loud-
speakers that introduces a conceptual front and back. Upmixers
aim to enhance this representation by generating ambience around
the listener that seeks to simulate the reflections and reverberation
of the recorded or synthesized environment [16]. They in effect
create a frontally focused sound field with additional surrounding
ambience, which is generally adequate for traditional screen-based
media where the action will be coming from the front and there-
fore the attention of the audience will be directed towards the front.
This approach, however, introduces challenges for stereo signals
recorded in real environments as sources may be located at vary-
ing positions on both the median and horizontal planes.

Consider an example where a spaced stereo microphone pair
is placed in the center of 4 loudspeakers positioned at azimuth,
θ = 45◦, 135◦, 225◦, 315◦. A sound is played from each speaker
sequentially, starting with the speaker at 45◦ and continuing in an
anti-clockwise direction. Traditional methods of panning estima-
tion would yield near identical values for the sources at 45◦ and
135◦ as well as identical values for those positioned at 225◦ and
315◦. The identical value pairs are a result of traditional stereo lo-
calisation estimation methods being limited to the lateral position,
usually based on either the Time Difference of Arrival (TDOA)
between the two microphone signals or the inter-channel ampli-
tude difference. Subsequently, were these signals to be upmixed
using systems such as those proposed in [1, 7, 17, 18] and repro-
duced over a 5.1 configuration the perception of source movement
around the array would not be congruent with that observed during
the recording. Instead, the direct components of the two source
positions at 45◦ and 135◦ would be reproduced at the front left
of the array, and the two sources at 225◦ and 315◦ reproduced at
the front right, whilst the surround speakers would predominately
contain the decorrelated diffuse component.

The work presented in this paper aims to develop a deep learn-
ing approach where, given appropriate input features containing
time, amplitude, and phase information, an NN can be trained to
approximate a mapping function that predicts spatial features for
a 360◦ space from the information contained within and derived
from a stereo signal. These spatial features can then be used to
facilitate upmixing methods that move away from frontally biased
systems to ones that aim to reproduce a sound field that approx-

imates the spatial characteristics that would have been present at
the time of recording.

3. METHODS

3.1. Model

The MuCh-Res-U-Net architecture proposed in this paper com-
bines the multi-channel U-Net approach detailed in [19] with a
similar Residual-U-Net backbone to that used in [20] to form a
9-level Res-U-Net architecture with a multi-channel output equal
to the number of predicted time-frequency parametric spatial fea-
tures. Each encoding and decoding block consists of two sequen-
tially stacked convolutional blocks which contain a batch normal-
isation layer, a Leaky ReLU activation layer, and a convolutional
layer.

The original U-Net architecture, developed for image segmen-
tation tasks [21], has been shown to be effective when applied
to a number of audio-related tasks including source separation
[19, 22, 23], voice conversion and cloning [24, 25], denoising [26],
and audio synthesis [27, 28]. Additionally, U-Net style architec-
tures lend themselves to tasks where the input and output data are
of similar dimensions due to the symmetry of the encoder and de-
coder paths.

3.2. U-Net

The original U-Net consists of an encoding path and a decoding
path with skip connections that are passed from the encoding layer
to the corresponding decoding layer, identical to those shown in
Figure 1 which depicts a representation of the MuCh-Res-U-Net
architecture proposed in this paper. The encoding path is simi-
lar to traditional convolutional neural networks (CNN) where the
resolution of the feature maps decreases through consecutive lay-
ers while the number of feature maps/number of filters increases.
The encoded data is then transformed within the latent space of the
bottleneck encoding block before being decoded through the up-
sampling of the resulting feature maps in the decoding path. The
skip connections allow for the propagation of information from the
encoding layers to the decoding layers and serve to preserve and
propagate localised features that may otherwise be lost due to the
dimensionality reduction of the deeper encoding layers.

3.3. Residual Connections

The residual connections within the encoder and decoder blocks
facilitate two main advantages; firstly, they reframe the modeling
problem to one of modeling the residual between the input and
targets, as opposed to the complete transform from input to target
[20]. The residual block can be formulated as in [29]:

yl = F(x, {Wi}) + I(x) (1)
xl+1 = f(yl) (2)

where xl and xl+1 are the input and output of the residual unit
respectively, yl is the output of layer l, F(·) is the residual func-
tion, f(·) is the activation function, and where I(·) is the identity
mapping function where generally I(·) = xl.

Secondly, they allow gradients to be back-propagated unim-
peded to earlier initial layers due to the nature of derivatives of
summation operations. This mitigates the vanishing gradient prob-
lem, which can cause gradients to approach zero for earlier layers
due to sequential multiplications of small numbers[30].
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Figure 1: Proposed MuCh-Res-U-Net architecture

3.4. Input Features

The input feature vector used to train the model consisted of the
short-time log-magnitude spectrum of each stereo channel and the
Generalised Cross-correlation with phase transform (GCC-PHAT)
[31] to provide the model with both spectral and phase informa-
tion. The short-time log-magnitude spectrum was derived by first
transforming each stereo channel into a time-frequency representa-
tion using the STFT, which was calculated using a non-symmetric
Hann window with a length of 1024 and a hopsize of 512. This
corresponds to a window length of 46 ms at a sampling frequency
of 22.05 kHz with 23 ms between the onset of successive frames.
The frequency resolution is approximately 21.5 Hz with the low-
est detectable frequency being ≈100 Hz. A logarithmic function
is then applied to retrieve the log-magnitude spectrum in dB.

The GCC-PHAT was chosen as the phase feature as it is widely
used for estimating time difference of arrival (TDOA) and is com-
monly used for Sound Event Localisation and Detection (SELD)
based machine listening tasks [32] and is calculated by first trans-
forming the channels into the frequency domain and combining
them through a generalised cross-correlation as defined in [33]:

ΨG[ωk] = X∗
1 [ωk]X2[ωk] (3)

where ΨG is the generalised cross-correlation,Xn is the frequency
domain representation of the given channel, ωk is the frequency
index in radians, and ∗ represents the complex conjugate of a com-
plex number.

The phase transform (PHAT) is then applied such that the mag-
nitudes are normalised and any effects due to amplitude are elimi-
nated:

ΨP [ωk] =
ΨG[ωk]

|ΨG[ωk]|
(4)

The inverse Fast Fourier Transform (iFFT) is then applied which
results in a frequency-weighted time-domain cross correlation and
is obtained by:

ψP [n] = F−1

{
ΨG[ωk]

|ΨG[ωk]|

}
(5)

where F−1 is the iFFT which results in the feature that will be
used as input into the proposed network. The delay between the
signals can be estimated by reading the histogram such that:

τ = arg max ψP [n] (6)

It should be noted that when being used within machine learning
applications it is common for the GCC-PHAT to be captured for
each time frame resulting in a 2D feature map.

3.5. Target Features

The desired target features were the directional of arrival (DOA)
of each time-frequency component in spherical coordinates mea-
sured in radians and a diffuseness index. These are common fea-
tures often used in traditional upmixing systems to extract, reposi-
tion, and render the direct and diffuse components of a given sig-
nal. As the aim of the network is to predict these features within
a 360◦ space, target features were extracted from the synthesised
Ambisonic scenes using Directional Audio Coding (DirAC) anal-
ysis [34] using the same STFT parameters as detailed for the input
feature extraction.

Directional analysis utilising B-format signals is performed as
per [34] and [35], using an energetic analysis of the sound field
based on the STFT domain representations of the sound pressure
P (m,ωk) and particle velocity U⃗(m.ωk) at the recording posi-
tion, where m, ωk are time and frequency indices respectively.
The W channel signal is regarded as proportional to the sound
pressure, while the three orthogonal pressure gradient signals X,
Y, and Z capture signal properties considered to be proportional to
sound velocity. This gives the relationship [35]:

P (m,ωk) =W (m,ωk) (7)

U⃗(m,ωk) = − 1√
2Z0

X⃗ ′(m,ωk) (8)

where X⃗ ′(m,ωk) = [X(m,ωk), Y (m,ωk), Z(m,ωk)]
T is the

vector of B-format pressure gradient signals and Z0 is the charac-
teristic impedance of air. The 3-dimensional instantaneous inten-
sity vector is an estimate of the direction of the net flow of energy
and is calculated for each time and frequency index as:

I⃗(m,ωk) = ℜ{E{P ∗(m,ωk)U⃗(m,ωk)}} (9)

where E{·} represents a short time averaging operation.
As the intensity vector is said to point in the direction of the

net flow of energy, the direction of incidence is defined to be the
opposite direction of the intensity vector and points towards the
source [34]. This can simply be defined as:

D⃗(m,ωk) = − I⃗(m,ωk)

||I⃗(m,ωk)||
(10)

The resulting matrix D⃗ contains time-averaged directional of ar-
rival (DOA) estimates for each time-frequency tile. The desired
azimuth and elevation angles in radians can be derived from this
as follows [36]:

θ = arctan

(
I3
I1

)
(11)

ϕ = arccos

(
I2

||I⃗||

)
(12)
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where I1, I2, and I3 are the first-order channel matrices contained
within I⃗ .

The diffuseness index is estimated in the STFT domain as
[11]:

ψ(m,ωk) = 1−
√
2||ℜ{E{P ∗(m,ωk)U⃗(m,ωk)}}||

|E{P ∗(m,ωk)}|2 + ||E{U⃗(m,ωk)}||2
(13)

where a value of ψ = 0 indicates the net flow of energy from a
given time-frequency tile corresponds to the total energy within
that time-frequency tile. A value of ψ = 1 indicates there is no
net transfer of acoustic energy within that time-frequency tile and
thus indicates a completely diffuse sound field.

Lastly, the short-time averaged energy vector can be derived
as in [37]:

E⃗(m,ωk) = |E{P ∗(m,ωk)}|2 + ||E{U⃗(m,ωk)}||2 (14)

3.6. Training and Optimisation

The model contained 154,777,346 trainable parameters and was
trained using mini-batch gradient descent with a batch size of 6
and using Adam with decoupled weight decay regularisation [38].
Gradient accumulation [39] was used to increase the effective batch
size to 45 and negate issues associated with smaller batch sizes,
such as larger inter-batch variance. A learning rate schedule was
adopted that consisted of a linear warm-up over 1000 steps to a
maximum learning rate of η = 8 × 10−4. The learning rate re-
mained static for 2 × warm-up steps before following a scheme
of Cosine Annealing with warm restarts [40] with 10 epochs for
the initial restart with the number of epochs between subsequent
restarts increasing each time by a factor of 2. The training period
was 100 epochs, which took approximately 20 hours and 40 min-
utes.

An adaptive gradient clipping method [41] was utilised to al-
low a clipping threshold to be set based on the history of gradient
norms observed in the training run. This helps minimise the risk
of exploding gradients caused by the often non-smooth nature of
NN loss landscapes [42] and allows for an appropriate selection of
the clipping threshold parameter without including it in a hyper-
parameter search. It was set to clip to the 10th percentile of the
derived threshold as this would help to ensure any outliers would
not have a disproportionate impact on the clipping threshold. The
Mean Squared Error (MSE) between the estimated time-frequency
parameter values and the ground truth parameter values was used
as the loss function and can be defined as:

loss(ŷi, yi) =
I∑

i=0

1

K

K∑
k=0

(ŷik − yik)
2 (15)

where ŷik is the prediction for the kth time-frequency tile in the
ith target feature map. The losses from each feature are summed to
get the final loss. The model was trained for a total of 100 epochs.

At the feature extraction stage, before the time-frequency trans-
form, a noise injection layer randomly adds Gaussian noise to the
time-domain signals based on a given probability. Noise injection
has been shown as an effective regularisation method as it serves
as a type of data augmentation to prevent the network overfit-
ting through continuous sampling of the noise inherent in smaller
datasets [43, 44]. The amount of noise added is scaled accord-
ing to each example to achieve an SNR of 20 dB, a value reached
through iterative testing.

3.7. Dataset

An investigation into ML-driven upmixing of stereo signals re-
quires a dataset that contains the relevant input-output pairs with
which to train and evaluate the model. In the case of this work,
a dataset containing equivalent stereo and Ambisonic signals was
desired. Equivalent stereo and Ambisonic sound scenes were syn-
thesised using a dataset of stereo and multi-channel IRs for a 50-
point Lebedev quadrature sampled sphere, collected by the authors
[45], which were convolved with audio files from the NIGENS
dataset using a procedure that builds on that proposed in [46]. The
IR dataset consists of two-channel stereo IRs for 9 stereo configu-
rations, the 32 channels captured from an Eigenmike, and spherical
harmonic components up to 4th order derived from the Eigenmike
signals using the Eigenunits plugin [47]. Details of the microphone
configurations and capture methodology are presented in [45].

For this initial investigation, the network was trained on a sin-
gle stereo configuration to limit the complexity of the problem
space. The AB_Omni_40 set was chosen based on the results of
an initial set of experiments conducted on 60 training examples to
ascertain which stereo configuration had the potential to converge
the fastest. It is acknowledged that 60 examples is too small a
dataset on which to base any definitive conclusions of training po-
tential, however, as the work was practically limited by available
compute power it was decided this would be adequate in deciding
on a configuration with which to conduct this initial investigation.
Additionally, the omnidirectional signals allow for either channel
to be taken as an approximation for the omnidirectional pressure
component which will simplify the upmixing pipelines as detailed
in Section 4. All scenes generated were 7 seconds in length and
a total of 6000 unique scenes were generated. This resulted in a
dataset comprising of 11 hours and 36 minutes of sound material
with a split of 4500 (75%) examples for training and 750 (12.5%)
for each of the validation and test sets.

4. STEREO TO B-FORMAT UPMIXING

Time-frequency
analysis

Directional
parameter

Predictions via 
MuCh-Res-U-Net

Time-frequency
synthesis

Spherical harmonic
channels 

Time-frequency 
feature extraction

Signal 

Meta-data

L

R

Mono Downmix

Time-frequency
synthesis

Spherical harmonic
encoding

Stereo Input

Figure 2: Block diagram of proposed stereo to B-format upmixer
utilising directional parameters predicted by MuCh-Res-U-Net

The spatial parameters predicted by the proposed network can
be applied to a number of different upmixing scenarios. As an
illustrative example, a pipeline (shown in Figure 2) is presented
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that utilises the network within a stereo upmixing algorithm. The
example algorithm takes a stereo signal, captured with a spaced
stereo microphone pair, and upmixes the signals to first order spher-
ical harmonic components, which will be referred to by their B-
format channel labeling.

First, a mono signal must be derived to represent the W chan-
nel, which can be approximated by an omnidirectional pressure
signal. Due to the low inter-channel amplitude differences, the
mono signal can be approximated using one of the two stereo sig-
nals The directional spatial parameters predicted by the model are
then used to extract and weight the frequency components accord-
ing to the target spherical harmonic coefficients [48]:

βσ
mi(m,ωk) =W (m,ωk)Y

σ
mi(θ̂(m,ωk), ϕ̂(m,ωk)) (16)

Where:

• βσ
mi(m,ωk) is the time-frequency representation of the Am-

bisonic channel representing the spherical harmonic Y σ
mi,

• W (m,ωk) is the time-frequency representation of the W
channel from which the frequency components are being
extracted and remapped. This approach is similar to that
proposed in [49] where DirAC for telecommunications only
transmits the metadata and W channel, discarding the other
B-format channels after DirAC analysis.

• θ̂(m,ωk) and ϕ̂(m,ωk) are the predicted time-frequency
directional parameters for azimuth and elevation respec-
tively.

Finally, the resulting time-frequency Ambisonic channels can
then be returned into the time-domain using the inverse STFT.

5. EVALUATION OF UPMIX PIPELINE

The IRs used to synthesise the training data were also used to spa-
tialise a 3s pink noise burst, followed by 0.5s of silence, at all
sampled locations on the horizontal and all elevation locations di-
rectly frontal to the receiver, which due to the Lebedev sampling
scheme were located at azimuth positions 0◦, 18◦, or 45◦. The
directional performance of the upmix algorithm is evaluated based
on the spherical distance, as defined in [50], between the DOA
estimations (DOA-Est) for the upmixed B-format signals and the
ground-truth B-format signal and will be referred to as the Total
DOA error. It can be calculated as follows:

∆DOA3D = arccos(sin(ϕ̂) sin(ϕ)

+ cos(ϕ̂) cos(ϕ) cos(|θ − θ̂|)) (17)

where ∆DOA3D is the Total DOA error as spherical distance in
degrees ◦ and θ̂, ϕ̂ are the DOA-Est from the upmixed B-format
signals and θ, ϕ are the DOA-Est for the ground-truth B-format
signals.

When referring to the DOA error for a single direction, either
θ or ϕ, the 2D angular distance used, which can be defined as:

∆DOA2Dθ = |θ − θ̂| (18)

where ∆DOA2Dθ is the error in the azimuthal direction and where
the error in the elevation direction, ∆DOA2Dϕ, is calculated by:

∆DOA2Dϕ = |ϕ− ϕ̂| (19)

The DOA-Est are derived from the unsmoothed intensity vec-
tor, using the MATLAB library presented in [51]. The acoustic
intensity measurements are sampled across time using a window
length of 100 samples with an overlap of 50% and are used to com-
pute histograms of their estimated DOAs, weighted by the magni-
tude of the vectors. DOA-Est are made on a vector of spherical grid
points with a resolution of 5◦. The grid locations associated with
the greatest number of DOA estimates are assumed to represent
the directions of the dominant sound sources and are determined
based on Von-Mises peak-finding, presented in [52], which facil-
itates DOA estimates for a specified number of sources over the
length of the given signal.

Figure 3 shows the DOA-Est histograms for a pink noise burst
spatialised to θ = ϕ = 0◦ for both the upmixed and ground truth
B-format signals. As well as a Total DOA error of 22.34◦, there
is also evidence of greater fluctuations and variability in the DOAs
estimated for the upmixed B-format signal. This infers that some
spatial instability exists between time frames within the predicted
directional parameters, where the predicted values cause DOA es-
timates to fluctuate between time-frames to a greater extent than is
present in the ground truth data.
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Figure 3: Directional grid of DOA estimates resulting from the
time-sampled intensity vectors of the (a) upmixed B-format signals
and (b) ground truth B-format signals for a source spatialised to
θ = ϕ = 0◦.
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Figure 4: Directional grid of DOA estimates resulting from the
time-sampled intensity vectors of the (a) upmixed B-format signals
and (b) ground truth B-format signals for a source spatialised to
θ = 45◦, ϕ = 0◦.

Figure 4 shows the results for a pink noise burst spatialised at
θ = 45◦, ϕ = 0◦, which resulted in a DOA error of 29.07◦. There
is also similar evidence of spatial instability with respect to the
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spatialisation derived from the predicted parameters. However, in
this instance, the instability seems to be much more localised to the
horizontal plane within ±20◦ elevation with the DOA-Est having
a higher concentration around the dominant peak, which suggests
a more stable spatial image.

For a source at θ = −135◦, shown in Figure 5, the DOA error
is 45◦ and the predicted parameters have been unable to produce
an upmix where the source is positioned to the rear of the receiver
but instead positioned it at the extent capable of traditional stereo
directional estimates, at θ = −90◦ . The source appears, however,
to be spatially stable, as evidenced by the high concentration of
DOA-Est within a smaller number of grid locations. Interestingly,
although being symmetric about the median plane, results for a
pink noise burst located at θ = +135◦ showed greater instability
with DOA estimations spread through across a range of azimuth
values from −90◦ to +90◦. For these positions, the predicted spa-
tial parameters have failed to result in any DOA-Est to the rear
of the receiver, which means the network was unable, in this in-
stance, to predict directional parameters that result in the sources
being remapped to the rear by the upmix process.
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Figure 5: Directional grid of DOA estimates resulting from the
time-sampled intensity vectors of (a) the upmixed B-format signals
and (b) the ground truth B-format signals for a source spatialised
to θ = −135◦, ϕ = 0◦.

Figures 6 shows the DOA-Est for sources located at θ = 45◦,
ϕ = ±65◦. The results show that the predicted parameters are able
to facilitate the upmix algorithm in positioning sources at both pos-
itive and negative elevations, although their position is underesti-
mated in both the above and below cases. Whilst source positions
of θ = 45◦, ϕ = ±65 resulted in Total DOA errors of 39.07◦ and
23.07 for ϕ = 65◦ and ϕ = −65◦, respectively, it should also
be highlighted that a large contributor to the error values for the
elevated source positions are due to larger errors in the azimuthal
direction, with the results for elevation direction in isolation being
within 25◦ of the DOA-Est resulting from the ground truth.

6. DISCUSSION

From these preliminary results, it appears that whilst the model has
begun to learn a mapping function for lateral position, it has been
unable to approximate a mapping function for front/rear source
mapping. Two possible reasons could be hypothesised as to why
this is. Firstly, is that the input features do not contain the re-
quired information to adequately differentiate between front and
rear source positions, and different, or additional, input features
are required. Secondly, is that a more suitable training strategy is
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Figure 6: Directional grid of DOA estimates resulting from the
time-sampled intensity vectors of (a) and (c) the upmixed B-format
signals and (b) and (d) the ground truth B-format signals for a
source spatialised to (a), (b) θ = 45◦, ϕ = 65◦, and (c), (d)
θ = 45◦, ϕ = −65◦.

required for optimisation of the loss function, which would both
investigate whether the model being better optimised results in
more accurate estimations of frontal azimuth positions and whether
better optimisation would result in the model learning a more ac-
curate mapping function to differentiate between front and rear
source positions. The results also suggest that the model has be-
gun to learn an approximate mapping function for source eleva-
tion, which results in upmixed sources being correctly positioned
at either positive or negative elevation values.

7. FUTURE WORK

With an initial model developed and preliminary evaluation under-
taken, future work should address more extensive evaluation of the
algorithm including comparisons with existing upmixing methods,
subjective listening tests, and testing using audio which has been
spatialised with unseen IRs. Furthermore, model optimisation util-
ising different/multiple stereo configurations contained within the
wider dataset collected by the authors should also be investigated
alongside. Finally, perceptually weighted loss functions based on
the measured diffuseness of the time-frequency components may
help to optimise the prediction of directional parameters.

8. CONCLUSIONS

This paper detailed the development, investigation, and evaluation
of a deep learning approach to predicting time-frequency spatial
parameters for use within stereo upmixing using input feature vec-
tors extracted from stereo signals. Relevant background was pre-
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sented with respect to the current approaches to stereo upmixing
that exist within the literature. The methodology for spatial pa-
rameter prediction was then detailed including the neural network
architecture, dataset collection, input feature extraction, and model
optimisation. Following this, an example upmix pipeline was pre-
sented that utilised the predicted time-frequency spatial parameters
to facilitate a stereo to B-format upmix. Evaluation of the upmixed
signals showed that whilst the current model could not predict di-
rectional parameters that resulted in the spatial remapping of time-
frequency components such that objects were evaluated as being
placed to the rear of the spatial scene, the predicted parameters
were able to map to both positive and negative elevation values.
These results provide evidence that there exists information within
stereo signals that can be used to derive height information whilst
further work is required to optimise a model to improve its per-
formance when applied to front/rear remapping of time-frequency
components.
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