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ABSTRACT

Vibrato is an important characteristic in human musical perfor-
mance and is often uniquely characteristic to a player and/or a
particular instrument. This work is motivated by the assumption
(often made in the source separation literature) that vibrato aids
in the identification of multiple sound sources playing in unison.
It follows that its removal, the focus herein, may contribute to a
more blended combination. In signals, vibrato is often modeled as
an oscillatory deviation from a center pitch/frequency that presents
in the sound as phase/frequency modulation. While vibrato im-
plementation using a time-varying delay line is well known, us-
ing a delay line for its removal is less so. In this work we focus
on (de)modulation of vibrato in a signal by first showing the re-
lationship between modulation and corresponding demodulation
delay functions and then suggest a solution for increased vibrato
removal in the latter by ensuring sideband attenuation below the
threshold of audibility. Two known methods for estimating the in-
stantaneous frequency/phase are used to construct delay functions
from both contrived and musical examples so that vibrato removal
may be evaluated.

1. INTRODUCTION

Musical performances often contain moments of musicians play-
ing in unison or harmony to form complex timbres that may be
perceived as a fused sonic source, as opposed to multiple instru-
ments. Players may adjust their volume, pitch, vibrato or other
performance techniques to more closely match those of the other
performers. There are several analogous practices in electronic
music where audio samples are overlaid in time to approximate the
timbre of a target sound; examples of such practices include, but
are not limited to: target-based concatenative synthesis [1], audio
mosaicing [2], and automated orchestration [3]. Unlike in live per-
formance, samples from an audio database exist without musical
context and may need to be edited or processed to blend together
more naturally into a more fused sound. One common approach is
sound morphing, where multiple signals are analyzed and resyn-
thesized into a single signal that contains some timbral qualities
of each individual signal [4]. However, the fidelity and potential
richness of multiple overlaid sounds may be lost due to the reduc-
tion of signals or artifacts of the analysis or resynthesis. We are
therefore interested in methods for processing multiple signals in
the interest of creating the perception of a more uniform tone while
maintaining the presence of two or more separate sources.
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Our methods are informed by the related inverse problem of
audio source separation. Source separation algorithms take one
signal comprised of several sources and attempt to separate the
sources into individual signals. Our interest is in understanding
how these algorithms perform the separation so that we can do
the opposite: take separate signals and modify them so that they
are less separable. Of particular interest is the source separation
of unison signals, where separation is more difficult due to the
many shared frequencies between the partials of each source. Uni-
son source separation algorithms [5, 6] focus on the Common Fate
principle of psychoacoustics, where sound partials from the same
source have related perceived movement. These algorithms ana-
lyze the amplitude and frequency modulation patterns of the signal
to determine vibrato patterns for each source that can be used to
isolate their partials.

It is believed that humans also use vibrato patterns to distin-
guish instruments playing in unison. Humans were found to be
remarkably good at counting the number of instruments in a mix,
even when playing in unison, up to a limit of three to four instru-
ments [7]. These results hold for controlled laboratory settings and
more general online surveys [8]. Based on these results, the psy-
choacoustic theory (Gestalt grouping principle) of Common Fate
and the success of unison source separation algorithms in isolating
signals based on vibrato patterns, it stands to reason that two sig-
nals (particularly when playing in unison) could be made to sound
more uniform and fused if their vibrato patterns were matched ex-
actly.

In order to match the vibrato pattern of signals to blend them,
we must characterize and analyze the signal properties that repre-
sent vibrato in a sound. Vibrato is typically associated with slow
frequency modulation, where a periodic signal oscillates above and
below a fundamental frequency with perceptible regularity. Clas-
sic analog and digital implementations of vibrato use a delay-line
with time-varying delay to introduce a desired fundamental fre-
quency deviation to an input signal. It is less common and, as will
be shown, less straightforward, to use the same method for remov-
ing existing vibrato from a signal.

In acoustic instruments, vibrato techniques often impart both
amplitude and frequency modulation to the sounding note. There
are a handful of existing methods for analyzing amplitude and
frequency deviation in signals with vibrato, including at the per-
harmonic level [9, 10]. This work focuses on the frequency modu-
lation pattern caused by vibrato and how it can be modeled through
signal analysis. If the modulation patterns caused by vibrato can
be accurately modeled, the patterns can be removed and/or trans-
ferred to another signal using a delay line.

Vibrato patterns cannot be directly transferred to a signal with
its own vibrato. Therefore, methods for demodulating a signal are
also required. Frequency and amplitude demodulation are a well
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researched topic in communications [11], but there are challenges
in directly applying their methods in a musical context. In commu-
nication systems, the modulating wave contains all relevant signal
information and the carrier is a simple, high-frequency sinusoid;
demodulation recovers the modulating signal and the carrier wave
is discarded. When modeling vibrato as frequency modulation,
the modulating wave contains the vibrato patterns of interest while
the carrier wave is itself time-varying and contains the timbre and
fundamental frequency of the sound. It is therefore necessary to
develop demodulation algorithms appropriate for a musical con-
text.

This work proposes methods for analyzing, modeling and de-
modulating signals with vibrato. Section 2 reviews the vibrato ef-
fect as it is implemented in discrete time using a delay line with a
delay function (related to the time warping function [5]). A first
demodulation delay function is constructed by its inversion and
then a method is proposed to further reduce any modulation side-
bands that may remain from the vibrato. The theory is demon-
strated in Section 3 by using two separate methods for estimating
instantaneous frequency and/or phase from musical signals and us-
ing the resulting estimates to form (de)modulation delay functions.
Finally, practical considerations that arise when deriving and using
delay functions are presented, along with possible solutions.

2. VIBRATO AND FREQUENCY (DE)MODULATION

Vibrato is a human performance characteristic whereby the player
deviates from (by moving slightly above and below) a center pitch
or sounding frequency in a regular oscillatory way. The nature of
the vibrato is often distinct among different players (as well as the
instruments themselves) and while it is often simulated in com-
puter music as being sinusoidal, the reality can offer much greater
diversity (e.g. the swing above and below the carrier frequency is
not necessarily equal). For this reason, analysis/estimation of the
vibrato signal from a sound is necessary before demodulation.

Because vibrato is a slow wavering of frequency (though not
necessarily sinusoidal) it is often modeled as a frequency modu-
lated (FM) carrier oscillator having instantaneous frequency given
by

ωi(t) = ωc − d cos(ωmt) rad/s, (1)

where d is the oscillator’s peak frequency deviation (vibrato depth)
from carrier/center frequency ωc and ωm is the frequency of mod-
ulation (vibrate rate). For numeric reasons, it is often preferable to
implement FM as phase modulation (PM) with the corresponding
instantaneous phase being given by the integral of (1) with respect
to time:

θi(t) =

∫ t

0

ωi(t)dt = ωct− I sin(ωmt) + ϕc, (2)

where the amplitude of the time-varying sinusoidal term

I =
d

ωm
. (3)

is known in the FM synthesis literature as the index of modulation
because of its influence on the sidebands that are produced at fre-
quencies ωc ± kωm in the resulting spectrum. If ωm is at audio
rates, changing I can result in a significant perceptual change in
both tone quality and sounding frequency. If ωm is at lower rates
of oscillation, the time variation of frequency/pitch is more easily

tracked by the listener and the vibrato effect results, with I influ-
encing its depth.

If synthesizing a tone from sinusoids, the modulation may be
implemented simply by applying the phase (2) to a carrier oscilla-
tor (e.g. cos(θi)). If, however, the vibrato is applied to an existing
signal, other methods such as a time-varying delay line (or resam-
pling according to a warping function) or sinusoidal modeling may
be used.

2.1. Modulation with a Time-Varying Digital Delay Line

Sampling at rate fs Hz involves, in part, effectively replacing the
continuous variable t with integer multiples of the sampling period
T = 1/fs,

t −→ nT, (4)
where n = 0, 1, 2 . . . N is the sample index for a signal of length
of N samples.

If the discrete-time sinusoid with angular frequency ωc rad/s

z(n) = ejωcnT (5)

is the input to a time-varying delay line with delay function

Dm(n) =
I

ωc
sin(ωmnT )fs +

I

ωc
fs, (6)

with DC offset in (6) ensuring a positive delay [12], then the output
may be represented by the difference equation

zm(n) = z(n−Dm(n)) = ejωc(n−Dm(n))T , (7)

effectively substituting instances of n with warping function n −
Dm(n) so that (7) is a frequency-modulated sinusoid with instan-
taneous phase given by

θm(n) = ωcnT−ωcDm(n)T = ωcnT−I sin(ωmnT )−I, (8)

the discrete-time approximation to (2) (with initial phase ϕc =
−I). Notice that while demodulation (removing the modulation
caused by Dm(n)) could be accomplished for this single sinusoid
via the complex multiply

ejωcDm(n)T zm(n) = ej(ωcnT−ωcDm(n)T+ωcDm(n)T = z(n),
(9)

the same would not hold for a more typical signal having multiple
(K) harmonically-related sinusoidal components

zk(n) =
K∑

k=1

ejkωcnT (10)

similarly modulated by the delay function (6). That is

ejωcDm(n)T
K∑

k=1

ej(kωcnT−kωcDm(n)T ) ̸= zk(n) (11)

because modulating zk(n) produces a factor-of-k increase in the
index of modulation for the kth harmonic resulting in a greater
number of sidebands (higher-order Bessel functions having greater
value) for higher harmonics (see Figure 1).

It is for this reason that much of the research in vibrato re-
moval/modification treats harmonics separately. While this has
been shown to be effective using a sinusoidal modeling approach [13],
it may also be desirable for some applications to have a simpler
solution—one that treats the signal and its partials as a whole in the
time-domain (save any necessary vibrato analysis) so that removal
of the vibrato has a computational simplicity akin to its application
in (7).
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Figure 1: The spectrum of signal zk(n) (10) having K=10 har-
monics (top) is modulated by delay function (6) (middle) showing
increased frequency spread at higher harmonics. While the com-
plex multiply in (11) (bottom) may demodulate the vibrato (remove
the sidebands) surrounding the first harmonic, it does not do so
sufficiently for higher harmonics.

2.2. Demodulation with a Time-Varying Digital Delay Line

Consider the modulated sinusoid zm(n) (7) as the input to a delay
line with delay function Dd(n) constructed by inverting (6), that
is

Dd(n) = − I

ωc
sin(ωmnT )fs +

I

ωc
fs (12)

(again with an offset to ensure the delay-line delay is positive).
The output of the delay line is given by

zd(n) = zm(n−Dd(n)) = ejθm(n−Dd(n)) (13)

and has instantaneous phase given by substituting instances of n
in (8) with n−Dd(n) to yield the difference equation

θd(n) = ωc(n−Dd(n))T − ωcDm(n−Dd(n))T

= ωcnT + I sin(ωmnT )− 2I − Iϕ(n), (14)

where the final expression has the FM sinusoidal term

ϕ(n) = sin(ωmnT + I1 sin(ωmnT )− I1), (15)

for I1 = Iωm/ωc. Because Iϕ(n) ̸= I sin(ωmnT ), these two
terms do not cancel in (14) and zd(n) ̸= z(n), suggesting the de-
lay function (12) does not completely demodulate the vibrato. It
is worthwhile, however, to examine the extent to which Iϕ(n) ≈
I sin(ωmnT ) and whether the vibrato is at least reduced (or audi-
ble) in zd(n) as this will motivate a subsequent strategy for further
reduction.

A Fourier series expansion of (15) shows it expressed as a
weighted sum of harmonically-related sinusoids

ϕ(n) =
∞∑

k=−∞

ϕk(n) =
∞∑

k=−∞

Jk(I1) sin((1 + k)ωmnT − I1),

(16)
where Jk(I1) is the kth-order Bessel function of the first kind in-
dexed by I1. Assuming for vibrato that ωm << ωc and I is a low

integer value (with higher values more typical of synthesis appli-
cations), then I1 will be small and very few harmonics (sidebands)
of ωm will have significant amplitude greater than 0.001 (-60 dB).
For instance, the sideband of ϕ(n) at k = −1 given by

ϕ−1(n) = J−1(I1) sin(−I1) = J1(I1) sin(I1) ≈ 0 (17)

yields a DC component of negligible amplitude (less than 0.001)
for small I1. If the same approximation in (17) is made, then the
sideband at k = 1 may be approximated by

ϕ1(n) = J1(I1)(cos(I1) sin(2ωmnT )− sin(I1) cos(2ωmnT )

≈ J1(I1) cos(I1) sin(2ωmnT ) (18)

and the sideband at k = 0 by

ϕ0(n) = J0(I1)(cos(I1) sin(ωmnT )− sin(I1) cos(ωmnT ))

≈ sin(ωmnT )− J0(I1) sin(I1) cos(ωmnT ), (19)

where the unit-amplitude sinusoid arises since J0(I1) cos(I1) ≈ 1
for small I1. Adding (18) and (19) gives an approximation to (15)
as the sum

ϕ(n) ≈ sin(ωmnT )− I2
I

cos(ωmnT )+
I3
I

sin(2ωmnT ), (20)

where

I2 = IJ0(I1) sin(I1) and I3 = IJ1(I1) cos(I1). (21)

Substituting (20) into (14), yields

θd(n) ≈ ωcnT − 2I + I2 cos(ωmnT )− I3 sin(2ωmnT ) (22)

and a cancellation of the original modulating sinusoid in (14). Sub-
stituting (22) into (13) yields

zd(n) ≈ ej(ωcnT−2I)ejI2 cos(ωmnT )e−jI3 sin(2ωmnT ) = ẑd(n),
(23)

showing that ẑd(n) is an FM sinusoid with two very-low amplitude
modulating sinusoids. For small I2 and I3 (having values much
less than one), approximations may be made by considering only
sidebands k = −1, 0, 1 to yield

ejI2 cos(ωmnT ) =
∞∑

k=−∞

Jk(I2)e
jk(ωmnT+π/2)

≈ 1 + J1(I2)j
(
ejωmnT + e−jωmnT

)
,

e−jI3 sin(2ωmnT ) =
∞∑

k=−∞

Jk(I3)e
−jk2ωmnT

≈ 1− J1(I3)
(
ej2ωmnT − e−j2ωmnT

)
,

so that their product in (23) yields the final approximation of the
delay-line output given by

ẑd(n) ≈ ej(ωcnT−2I)

J1(I2)je
−j2I

(
ej(ωc+ωm)nT + ej(ωc−ωm)nT

)
−

J1(I3)e
−j2I

(
ej(ωc+2ωm)nT − ej(ωc−2ωm)nT

)
, (24)

showing a unit-amplitude sinusoidal component at carrier frequency
ωc along with two upper and lower sidebands at frequencies ωc ±
ωm and ωc ± 2ωm having amplitudes J1(I2) and J1(I3), respec-
tively (see Figure 2). (Note that (24) omits a final combination
term that contributes a negligible amplitude of J1(I2)J1(I3) to
the first and third upper and lower sidebands).
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Figure 2: Spectral magnitude of the delay line output zd(n) (13)
and its approximation ẑd(n) (24) for FM parameters I = 1,
ωc = 2π200 and ωm = 2π5. Strong agreement is visible for
2 sidebands above and below the carrier frequency greater than
-60dB: for k = ±1 the amplitude is J1(I2) = 0.0125 ≈ −38 dB
and for k = ±2 the amplitude is J2(I3) = 0.0062 ≈ −44 dB.

2.3. Further Vibrato Reduction

While the sidebands in (24) are small and associated vibrato barely
audible, since they are within the audio range (their amplitude is
greater than 0.001 or -60 dB) it may be desirable to further reduce
their amplitude to ensure inaudibility.

Consider next a demodulating delay function in which (12) is
delayed by itself, that is

Ddd(n) = Dd(n−Dd(n))

= − I

ωc
sin(ωm(n−Dd(n)T )fs +

I

ωc
fs

= − I

ωc
ϕ(n)fs +

I

ωc
fs, (25)

so the delay function is an FM sinusoid and the output of the delay
line is

zdd(n) = zm(n−Ddd(n)) = ejθm(n−Ddd(n)), (26)

having instantaneous phase given by substituting n with n−Ddd(n)
in (8) to yield

θdd(n) = ωcnT − ωcDdd(n)T −
I sin(ωmnT − ωmDdd(n)T )− I

= ωcnT − 2I + Iϕ(n)− I sin(ωmnT + I1ϕ(n)− I1).

(27)

Expressing the last term in the final expression of (27) as the imag-
inary part of an analytic signal,

I sin(ωmnT + I1ϕ(n)− I1) = Iℑ
{
ej(ωmnT−I1)ejI1ϕ(n)

}
,

(28)
and substituting the approximation for ϕ(n) in (20), yields inter-
mediate factor

ejI1ϕ(n) ≈ ejI1 sin(ωmnT )e−jA1 cos(ωmnT )ejA2 sin(2ωmnT ),
(29)

showing again an FM sinusoid with very low-amplitude modula-
tors. Since A1 = I1I2/I and A2 = I1I3/I are small, the approx-
imations

e−jA1 cos(ωmnT ) = j
∞∑

k=−∞

Jk(A1)e
jkωmnT ≈ J0(A1) ≈ 1,

ejA2 sin(ωmnT ) =
∞∑

k=−∞

Jk(A2)e
jk2ωmnT ≈ J0(A2) ≈ 1,

(30)

may be made because the zeroth sideband (k = 0) is the only term
in the infinite sum (30) having non-negligible amplitude (and it’s
amplitude is almost exactly equal to one). Substituting (30) into
(29) yields the approximation

ejI1ϕ(n) ≈ ejI1 sin(ωmnT ) (31)

and substituting (31) into the analytic signal (28) in turn yields

sin(ωmnT + I1ϕ(n)− I1) ≈ ℑ
{
ej(ωmnT+I1 sin(ωmnT )−I1)

}
≈ ϕ(n). (32)

Finally, when substituting the approximation of (32) into (27),
there is a cancellation of the sinusoidal terms so that

θdd(n) ≈ ωcnT − 2I, (33)

showing that the resulting delayed signal

zdd(n) ≈ z(n) (34)

is nearly equal to the original unmodulated sinusoid (omitting a
pure delay) with comparatively improved vibrato reduction and
attenuation of sidebands that are well below the threshold of au-
dibility (see Figure 3).

Figure 3: Spectral magnitude of the delay line output zdd(n) (red)
showing no sidebands greater than -60dB and thus greater vibrato
reduction when compared to zd(n) (blue).

3. OBTAINING THE DELAY FUNCTION

As with the phase-frequency relationship in (2), the instantaneous
frequency of zm(n) modulated by delay function Dm(n) is the
derivative of the phase (8) with respect to time (or nT for the
discrete-time signal here) and is given by

ωi(n) =
d

dnT
θm(n) = ωc − Iωm cos(ωmnT ))

= ωc

(
1− Ḋm(n)

)
(35)

where the derivative of the delay function with respect to n

Ḋm(n) =
d

dn
Dm(n) = Iωm/ωc cos(ωmnT ) (36)

is the relative frequency shift imparted by the delay function Dm(n).
From (35), it may be easily seen that the transposition factor (or
momentary transposition [12]), i.e. that value which, when multi-
plying an input frequency ωc, results in a transposition of sounding
frequency ωi(n), is given by

ωi(n)

ωc
= 1− Ḋm(n) (37)
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and thus the relative frequency shift may be expressed as

Ḋm(n) = 1− ωi(n)

ωc
, (38)

showing (38) may be estimated given frequency ωi(n) and carrier
frequency ωc. It follows from (36) that the delay function is ob-
tained by integrating the relative frequency shift, an operation that
may be approximated by the discrete-time cumulative sum of (38)

D̂m(n) ≈
n∑

l=0

Ḋm(l) ≈ n− θm(n)

ωcT
. (39)

The (intermediate) demodulating function is then estimated as

D̂d(n) = max{D̂m(n)} − D̂m(n), (40)

which is then delayed according to (25) to obtain D̂dd(n).
Obtaining either delay function is, then, a matter of first esti-

mating either the instantaneous phase θm(n) or frequency ωi(n).
In the following section, two commonly-used such techniques, one
that estimates frequency and one that estimates phase, are briefly
described and evaluated for their accuracy in examples estimating
vibrato delay functions for 1) a contrived broadband signal (saw-
tooth wave) with known vibrato, 2) a musical signal (clarinet) with
known vibrato (prior modulation with Dm(n)) and finally 3) for a
musical sound with unknown vibrato.

3.1. Estimating Instantaneous Frequency with Peak Picking

In this section two methods often used for obtaining ωi are ex-
plored and evaluated. The first method uses the Short-Time Fourier
Transform (STFT) followed by momentary peak tracking to obtain
ωi and the second uses a bandpass filter followed by the Hilbert
Transform to obtain the analytic (complex) signal with angle θi
(from which ωi may be derived). Examples of a guitar and vocal
sound are presented using these methods (see Figures 9 and 10).

In this method, the modulated (real) length-N signal y(n) is
analysed using the short-time Fourier Transform to obtain the N×
Nf matrix of Nf spectral magnitude frames

Y =


|Y0(ω0)| |Y1(ω0)| |Y2(ω0)| . . . |YNf−1(ω0)|
|Y0(ω1)| |Y1(ω1)| |Y2(ω0)| . . . |YNf−1(ω1)|
|Y0(ω2)| |Y1(ω2)| |Y2(ω0)| . . . |YNf−1(ω2)|

...
...

...
. . .

...
|Y0(ωN )| |Y1(ωN )| |Y2(ω0)| . . . |YNf−1(ωN )|


(41)

where the mth column, m = 0, 1, 2, . . . , Nf −1, is the magnitude
of the DFT

|Ym(ωk)| =

∣∣∣∣∣
N−1∑
n=0

x(n)w(n−mNh)e
−j2πkn/N

∣∣∣∣∣ (42)

at time starting from sample mNh for hopsize Nh and window
w(n). Because both time and frequency resolution are needed for
estimating the vibrato signal, hopsize Nh is made small and, for
the smallest hopsize of Nh = 1, a sliding DFT [14] may be used.

From each momentary spectral magnitude |Ym(ωk)| frame,
the “fundamental” frequency, defined here as the lowest frequency
with a significant peak amplitude, is tracked from frame to frame
to obtain frequency vector fp(0), fp(1), . . . , fp(Nf − 1). To find

Figure 4: First “fundamental” spectral magnitude peak of a saw-
tooth wave with a sinusoidal vibrato applied. Every 100th frame
is offset to show time evolution (from bottom to top) of the peak
position as it follows a sinusoidal vibrato track.

the true peak, a quadratic interpolation [15] 1 is used (see Figure
4). Vector fp(·) is then resampled at a rate equal to the hop size
Nh to yield a length-N vector fp

i (n) such that

fp
i (mNh) = fp(m), (43)

along with interpolated frequency values at intermediate indeces.
The estimated instantaneous frequency ωi(n) is then given by mul-
tiplying (43) by 2π. The p superscript indicates frequencies ob-
tained using the ‘peak picking’ method, examples of which are
plotted (along with the bandpass filter method described subse-
quently) for modulated sawtooth and clarinet signals in Figure 5.

3.2. Estimating Instantaneous Phase with a Bandpass Filter

Whether from fp
i (n) in (46) as was done here, or some external

pitch detection tool, a narrow-band bandpass filter Hb(ω) may be
designed to have bandwidth

Bw = (max{fp
i (n)}+ fe)− (min{fp

i (n)} − fe), (44)

and center frequency given by the mean of fp
i (n)

fc =
1

N

N−1∑
n=0

fp
i (n) ≈

max{fp
i (n)}+min{fp

i (n)}
2

. (45)

The value fe in (44) extends the lower and upper band edges to
ensure all modulation sidebands are able to pass with minimal er-
ror while not overlapping with the second harmonic (and it’s pos-
sible sidebands) or introducing any other unwanted signal noise.
It should be noted that in real instrument sounds fc may not be
constant throughout the note but rather time varying with a (non-
oscillating) upward or downward trend that is distinct from the
vibrato (see clarinet Figure 5, bottom).

1See “Sinusoidal Peak Interpolation" in the chapter Spectrum Analysis
of Sinusoids.
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Figure 5: Estimated instantaneous frequency for sawtooth (top)
and clarinet (bottom) using peak picking and bandpass filter
methods. Each is modulated with parameters fm = 5 and
I = 1 and compared to known frequency modulator fi(n) =
Ifm cos(ωmnT ). For the sawtooth fc = 200, but for the clar-
inet, fc is time varying (with a slight downward trend).

If the modulated signal is passed through bandpass filter Hb,
it is assumed the output is nearly sinusoidal, having only the first
“fundamental” harmonic along with any sidebands from the vi-
brato’s low-frequency modulation. For this reason, the angle of
the complex analytic signal of the filter output yields the instanta-
neous phase θbm(n) (with the b superscript indicating the bandpass
method) and instantaneous frequency by its derivative, approxi-
mated by the finite difference

ωb
i (n) =

θbm(n+ 1)− θbm(n)

T
, and fb

i (n) =
ωb
i (n)

2π
. (46)

Experiments with various bandpass filters for signal examples (Fig-
ure 5) showed using a sixth-order Butterworth2. resulted in fb

i (n)
having the best agreement with fp

i (n).
Once the instantaneous frequency ωp

i (n) or phase θbm(n) is
estimated, the corresponding delay function may be constructed
by (38) and/or (39) and then (40) for demodulation. Since both
peak and bandpass methods show good agreement, the latter may
seem to show the advantage of estimating θm(n) directly (without
numerically integrating ωi(n)). This is somewhere eclipsed, how-
ever, by the fact that fp

i (n) (or some external library) is needed to
assign parameters of the bandpass filter.

3.3. (De)trending the Delay Function

The effect of (de)modulating actual instrument sounds relies on
the assumption that 1) the sustained tone has significant amplitude
and 2) the oscillation is stable and sounds at a center frequency ωc

which, with some tolerance, can trend up/downward.
The need for an accurate estimate of ωc lies in the fact that

any small value (even rounding error) above or below the actual

2Filters were created using the butter function available in both
MATLAB and scipy.

Center Frequency
and Bandwidth

Frequency Domain Analysis

Source audio Bandpass filter

Delay and warp functions

Analytic Signal

Figure 6: A signal is processed using a bandpass filter to isolate
the signal of one partial. Delay and warp functions are derived
from the analytic signal.

value, will introduce an offset in ωi(n) that, because of the inte-
gral relationship with phase θi, will compound over time and intro-
duce an upward or downward trend in the estimated delay function
D̂m(n). To see this, consider the example of a constant transposi-
tion of 1/2 (down by one octave) a DC offset which from (37) and
(39) yields a delay function

n∑
l=0

(
1− 1

2

)
=

n∑
l=0

1

2
=

1

2
n,

having an upward linear trend with increasing sample index n.
While in this example the upward trend is desired, error in esti-
mating ωc can lead to similar but undesirable growth and a delay
function that is not sufficiently accurate to (de)modulate the vi-
brato. Further, such an upward (or downward) trend can make
implementation using a time-varying (circular) delay line imprac-
tical due to the constraint of a maximum delay length. For this
reason, delay lines are more suited to implementing time-varying
delay that is oscillatory, with a defined maximum and minimum
frequency, rather than constant transpositions or signals that chirp
over time.

The delay functions in Figure 7 correspond to the estimated fp
i

from signals in Figure 5 with an upward trend that is particularly
prominent in the clarinet, likely due to the fact that fp

i is estimated
in the presence of an ωc that is itself time varying (upward and
downward trend independent of the vibrato), a situation that is typ-
ical in many musical examples. Detrending (using either a linear
or polynomial detrending function) on these delay functions as in
Figure 7 (bottom), allows for separation of vibrato (an oscillating
signal) from more gradual (natural) frequency changes (gliding up-
ward to a pitch during the note onset and/or falling slightly flat in
its release). This produces delay functions that are more accurate
thus improving demodulation results (vibrato removal) and mak-
ing time-varying delay lines more practical for implementation.

Finally, returning to the motivation of improved blending of
combined signals by vibrato matching, Figure 8 demonstrates a
vocal signal with vibrato, its vibrato transferred to a synthesized
square wave, and the vocal signal after demodulation.
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Figure 7: Delay function (top) for sawtooth (blue) and clarinet
(red), with the clarinet showing a prominent upward trend, likely
due to the time dependent nature of its sounding frequency fc
(which is static for the sawtooth). The trending exists for both
peak picking and bandpass methods.

4. CONCLUSIONS

Given a method for estimating the instantaneous phase or frequency
of a signal, it is possible to construct a time-varying delay line with
a delay (or warping) function capable of imparting similar vibrato-
rate frequency modulation onto another signal (if it is itself initially
without vibrato). Once the delay function related to the modula-
tion is obtained, a demodulation delay function is derived from
its inversion and is shown herein to remove most audible effects
of the vibrato. Because this demodulation approach results in an
additional FM sinusoidal term however, very low-amplitude side-
bands are introduced by the process. It is shown, however, that if
the demodulating delay function is first delayed by itself (serving
as its own delay function) before being used to demodulate vibrato
from the signal, there is much greater reduction in the sidebands
of the additional FM term, effectively removing any vibrato effects
by attenuating them well below the point of inaudibility (defined
here as -60 dB).

Delay functions derived from frequency and/or phase estimates
(using peak picking and bandpass filter methods herein) may also
introduce up/downward trends that should be removed (via de-
trending functions) before use. Finally, though beyond the scope
of the work presented here, demodulation of any oscillating ampli-
tude envelope (known to frequently accompany vibrato [11] and
[16]) is also necessary for the sound to be truly void of any audible
vibrato effects.
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Figure 8: The frequency modulation from a vocal (left) is transferred to a previously unmodulated square wave (center). The vocal signal
can also be demodulated using the estimated functions (right).
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Figure 9: The estimated instantaneous frequency fb
i and modu-

lating delay function calculated from a guitar signal with vibrato.
This example shows a delay function that does not need detrending
due to the lack of an ever-increasing delay time.
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Figure 10: The estimated instantaneous frequency fp
i and modu-

lating delay function calculated from a vocal signal with vibrato.
The delay function is detrended due to its linear growth.
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