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ABSTRACT

In rooms with complex geometry and uneven distribution of en-
ergy losses, late reverberation depends on the positions of sound
sources and listeners. More precisely, the decay of energy is char-
acterised by a sum of exponential curves with position-dependent
amplitudes and position-independent decay rates (hence the name
common slopes). The amplitude of different energy decay com-
ponents is a particularly important perceptual aspect that requires
efficient modeling in applications such as virtual reality and video
games. Acoustic Radiance Transfer (ART) is a room acoustics
model focused on late reverberation, which uses a pre-computed
acoustic transfer matrix based on the room geometry and mate-
rials, and allows interactive changes to source and listener posi-
tions. In this work, we present an efficient common-slopes ap-
proximation of the ART model. Our technique extracts common
slopes from ART using modal decomposition, retaining only the
non-oscillating energy modes. Leveraging the structure of ART,
changes to the positions of sound sources and listeners only re-
quire minimal processing. Experimental results show that even
very few slopes are sufficient to capture the positional dependency
of late reverberation, reducing model complexity substantially.

1. INTRODUCTION

Room acoustics modeling, i.e. the prediction of reverberation in
enclosed spaces, has a wide variety of applications [1, 2, 3]. In
virtual reality, video games, and other interactive applications, it
is desirable to model reverberation in real time, based on chang-
ing parameters such as the positions of sound sources and listen-
ers [4, 5]. One of the main perceptual attributes of reverberation is
the rate of decay of acoustic energy in the room [6]. This aspect
is particularly crucial in environments with highly uneven energy
absorption distributions (e.g. coupled volumes, semi-open spaces),
where several decay rates may be observed depending on the po-
sitions of the sonic agents [7, 8]. The common-slopes model [9] is
particularly apt for applications that require an interactive update
rate as well as agent-adaptive late reverberation [10]. Said model
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relies on the separation of parameters that depend on the static
room geometry (the energy decay rates, hence the name common
slopes) and those that depend on mobile agents (the amplitude of
each slope) [11]. Previous works [11, 9] evaluated said parameters
from a grid of point-to-point Room Impulse Responses (RIRs).
Our proposed method seeks to evaluate them from the scene geom-
etry, through the modal decomposition of a Time-Domain Acous-
tic Radiance Transfer (TD-ART) model.

Acoustic Radiance Transfer is a Geometrical Acoustics (GA)
model that predicts the energy response of a room based on the
geometric and material properties of the environment [12]. What
makes it appealing for the purpose of common-slopes modeling is
that its fundamental parameters are in fact independent of source
and listener positions. Moreover, TD-ART may be interpreted as a
state-space model in which each state variable describes the acous-
tic energy flowing through a particular point in space, in a par-
ticular direction. In any state-space model with a physical inter-
pretation, such that each state variable is related to a position in
space, the eigenvectors of the state transition matrix are related
to modes’ spatial distribution, while its eigenvalues are related to
modes’ evolution over time [13, 14]. In this paper we show that
the eigendecomposition of TD-ART yields the energy decay rates
of the environment in the form of eigenvalues, and the slope ampli-
tudes’ positional dependence in the form of eigenvectors. Through
the eigenvectors, the common slopes parameters can be evaluated
for arbitrary positions at runtime. The RIRs can then be synthe-
sized using a sum of artificial reverberators [10].

Our target is the complexity reduction of ART. This endeav-
our was previously undertaken by Bai et al. [15]. Their proposed
method analyses the physical aspects of the ART model from the
perspective of acoustics, whereas the approach in this paper con-
cerns the analysis of the model in the framework of system the-
ory. Another noteworthy difference is that the method in [15] is
designed and validated for rooms with spatially uniform energy
decay, i.e. no dependence on source and listener positions, and a
single decay rate dominating the RIR. Our method is designed to
capture multiple slopes, and their positional dependency.

Section 2 reviews the fundamentals of energy decay rates, the
common-slopes model, TD-ART, and the modal decomposition
of state-space models. In Section 3, we describe our proposed
method for late reverberation modeling. Experimental results are
illustrated and discussed in Section 4. Section 5 closes this paper
with some concluding remarks and thoughts on future work.

2. BACKGROUND

We first recall the relationships of impulse responses, energy re-
sponses and decay, and the common-slopes model, in Section 2.1.
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Section 2.2 presents the TD-ART model, detailing the physical sig-
nificance of its components. Section 2.3 reviews recent modal de-
composition techniques related to models of the form of TD-ART.

2.1. Common-slopes model of late reverberation

The late reverberation energy decay €(¢,n) in a frequency band
can be retrieved as the short-time average, denoted with (), of
the band-passed energy response €(¢,n), i.e., squared pressure
response h(¢,n) [6]:

&(p,n) = (e(@,n)) = (h(ep,n)?), (1)

where ¢ is a vector containing information on the source and lis-
tener positions and orientations, and n is time in samples. The en-
ergy response €(¢, n), also known as echogram [6], is the primary
output of most GA models — including ART [12], as discussed in
the next section. The pressure-domain RIR can be retrieved from
it through “noise shaping”, meaning the square-rooted band en-
ergy 4/ €(¢, n) is used to modulate the amplitude of a band-passed
stochastic signal [1].

The common-slopes model [9] approximates the energy decay
using a superposition of /N exponential slopes

N
“¢,n) ~ Y xi()dr, @)
i=1

where 0 < &; < 1 is the energy decay rate per sample, and X7
is the amplitude of the i slope depending on the positions ¢.
The key aspect of the model is that decay rates, J;, are position-
independent and instead only depend on the room geometry and
materials. In contrast, the slope amplitudes depend on the posi-
tions, but not on time. In an ideal diffuse room, i.e., with a late
reverberation that is homogeneous and isotropic, the energy decay
is a single slope, i.e., N = 1 with no positional change, i.e., x?
is constant [16]. For realistic scenarios, multiple slopes can occur
concurrently. In [9], the common-slopes model has been validated
to approximate the late reverberation in a three-room scenario ac-
curately with only three slopes.

The method described in this paper is concerned with the ap-
proximation of €(¢p, n) for one frequency band, but it may easily
be extended to several bands. In an interactive application, ¢ can
change rapidly due to source and listener movements such that
efficient position adaption is key. In the following, we drop the
position dependency (¢) for brevity.

2.2. Acoustic Radiance Transfer

Acoustic Radiance Transfer is a GA model, i.e. it models sound
propagation in the form of acoustic rays rather than acoustic waves.
More precisely, it acts as a numerical solver for the Room Acous-
tics Rendering Equation (RARE), which is itself the foundation of
GA [12]. The analytical RARE characterizes the acoustic energy
(or “acoustic radiance”) leaving each point of a room’s boundary,
in the direction of each other surface point, taking the form of a
surface integral. By subdividing the room’s boundary into a fi-
nite number of surface patches, and assuming that the transferred
radiance is uniform from all points on one patch to all points of
another, ART discretises the RARE integral in space. The paths
connecting pairs of surface patches are referred to as “discrete di-
rections”. A visualization of two discrete directions is shown in
Fig. 1. Note that each discrete direction is related to exactly two

271

A NN/

Figure 1: Illustration of discrete directions in ART. Two discrete
directions are shown — one connecting the pair of surface patches
Pi and P, the other P> and Ps. The figure also shows a sound
source injecting energy (acoustic rays) into the former discrete di-
rection, and a listener detecting energy from the latter.

surface patches, and — as the name “direction” implies — the dis-
crete direction going from patch P; to P is distinct from the one
going from P» to P;.

Additionally, while the analytical RARE is a function of con-
tinuous time, describing it as a function of discrete time' gives rise
to Time-Domain Acoustic Radiance Transfer (TD-ART) [17]. In
the z domain, a TD-ART model with L discrete directions takes
the form

(3a)
(3b)

where s(z)eC" is the time-dependent energy being transferred
over each discrete direction; T,(2)e CYL is a diagonal matrix
containing the propagation delays 7,€N”, each of which mod-
els the time it takes for energy to traverse the corresponding dis-
crete direction; AeR™L is the reflection matrix, governing the
reflection of energy from each direction to the others; b(z)eCF,
c(z) eCrk, d(z)€C are the input, output, and direct filters, which

apply scaling and delay as defined in the following; z:(z) e C, y(z)eC

are the input and output signals, respectively. The complete model
is illustrated in Fig. 2.
The transfer function of (3) is given by [18]

E(2)

e'(2) [T — AT(2)] " b(2) + d(=)
() Ta(2) " [Tu(2)" — A] " b(2) +d(2) .

(4a)
(4b)

While this transfer function strongly resembles the Feedback De-
lay Network (FDN) form, note that (4b) differs slightly from the
form in [19, 20, 21], due to the presence of T (2) ™ after ¢'(z).

IThe discretized time steps only need to be small enough to capture
energy variations, i.e. the sample rate may be much lower than would be
required for auralization.
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Figure 2: Block diagram of a TD-ART model, as expressed in (3).

The evaluation of the parameters in (3), and the operation of
the TD-ART model, is divided in three steps:

1. The energy reflection between each pair of discrete direc-
tions is computed, forming the matrix A. This matrix holds
all of the information on the surface patches’ absorption and
scattering coefficients, as well as their form factors®. The
set of propagation delays 7, is also estimated, based on the
distance covered by each discrete direction.

Rays are traced from the sound source position to evalu-
ate how much energy is injected into each discrete direc-
tion and at what time, providing the input scaling weights
beR” and input delays 7, € N*. Rays are also traced from
the listener position, providing the output scaling weights
ceR” and output delays 7. NT. If there is a direct line
of sight between the source and listener, the direct compo-
nent’s energy and delay (de R, 74€N) are also evaluated.

The input operators b and 7y, are used to initialize the acous-
tic energy carried by each discrete direction at different
points in time, s(n)€R”. This is then iteratively propa-
gated (7,) and reflected (A) until the desired time range is
covered or the desired level of diffusion is reached. Finally,
s(n) is scaled by ¢ and delayed by 7 to obtain the en-
ergy contributions at the listener position. The sum of these
contributions and the direct component gives the energy re-
sponse over time.

Note that all of the time delay operations may make use of frac-
tional delays, as well as time spreading [17] in the form of Finite
Impulse Response (FIR) filters. The method proposed in this paper
extends to both of these scenarios, as it is applied in the z domain.

One of the main advantages of ART is that once A and 7, have
been computed, simulations can be run efficiently for different
source and listener positions. This includes situations with multi-
ple sources and/or receivers in the same scene. Frequency-domain
ART models have, in fact, been shown to run in real time [23, 24].
Another advantage is that ART is particularly suitable for late re-
berberation rendering, at the expense of directionally approxima-
tive early reflections [12]. The Ray Tracing Method suffers from
late-response uncertainty and “vanishing” energy [1], and the Im-
age Source Method from exponential complexity as the desired
reflection order increases [6, 1], but the accuracy and cost of ART
do not vary over the response’s duration. Both of these aspects

2ak.a. shape factors or view factors, these are the factors which gov-
erns radiance transfer [22, p. 38]. They can be interpreted as the patches’
relative “view” of each other.
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— a position-independent foundation and an aptness for late re-
verberation — make ART particularly attractive for the prospect of
common-slopes analysis.

2.3. Modal decomposition

Any Linear Time-Invariant (LTI) system may be represented as a
state-space model. Alternatively, the transfer function of a discrete-
time LTI system can be characterized in the z domain as [18]

E(z) (&)

where M is the number of modes, A;, p; € C are the pole and
residue of the i™ mode respectively, and d(z) is the system’s direct
(i.e. non-recursive) component. The corresponding time-domain
impulse response ¢(n) can be equivalently described as a sum of
complex oscillators, or modes [6]. Neglecting the direct compo-
nent for simplicity,

M M
e(n) = Y pA = D lpsl A"/ EPEEN) (6
i=1 i=1

where j = 4/—1, and Z(-), |-| respectively indicate the phase and
magnitude of a complex number.

In this paper, we apply the modal decomposition to the delay
state space form similar to (3), as described in [20, 21]. While
discussing the pole estimation in detail is outside the scope of this
paper [25], the estimation of residues is presented in the following,
as it will prove relevant in Section 3. For the given system, the
residues are defined as [20]

o = ') Ta(N) ! adj (P(M)) b(Ai)
' tr (adj (P (i) P’ (i) ’

@)

where P(z) = [Tu(2)" — A, tr(P) is the trace of P, adj(P) is
the adjugate of P, and P’(z) = %iz). Since A is not a function
of z, we can say

!

("]

Note that T (z) is diagonal, therefore P’(z) is diagonal as well.
If no time spreading is present in the recursion, the diagonal ele-
ments of Ty(z)" are [z™1, 272 ..., 2™L], and those of P’(z)
are [’Ta’lZT“’l_l, Tagz”"?_l, R T.‘,,Lz'ravL_l].

The decomposition method proposed in [21] relies on the ob-
servation that, due to the nature of poles, det (P()\;)) = 0, and
adj (P(\;)) can therefore be expressed as the outer product

P'(2) ®)

adj (P(\)) = viw;’ ©)
where w,” is the Hermitian transpose of w;. For the same reason,
we have P(\;)v; = 0 and w;” P(\;) = 07, meaning that the vec-
tors v; and w; can be found by solving the generalized eigenvalue
problems

Av; = To(\) ' oi, (10a)
w' A =wT,(\)", (10b)

where they respectively act as left and right eigenvectors.
>
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Combining (7)—(9), and leveraging the diagonal nature of P’(z),
one can find that

. ' () Ta(Ni) M vsw] b(N;) A
w/ [Ty(Xi) '] v

The modal decomposition of (3) can thus be summarized as [21]:

an

1. Estimation of poles \; using the Ehrlich-Aberth Iteration
(EAI) method® [25];

Estimation of left and right eigenvectors v;, w; through a
generalized eigenvalue problem;

Estimation of residues p; based on v;, w; using (11).

3. PROPOSED METHOD

The following sections present our proposed method for model
complexity reduction. The most prominent aspect of the reduc-
tion is the fact that only modes with real, positive poles are se-
lected, as explained in Section 3.1. Section 3.2 highlights which
elements of the model need to be computed at runtime for inter-
active applications, and discusses the physical significance of the
decomposition. Finally, Section 3.3 discusses some considerations
that can facilitate the pole-finding process.

3.1. Pole selection

Let us consider the energy response’s short-time average, as ex-
pressed in (1), in light of its modal decomposition in (6). Re-
call that all complex poles of a real system appear in conjugate
pairs [18], such that the imaginary parts of their modes cancel out,
leaving only the oscillating real part. Real, negative poles also
lead to oscillating modes, as A changes sign at each time sample
n. Removing oscillatory components is in fact the purpose of the
short-time averaging, which is meant to characterize the “steady”
decay of energy over time [6]. If the averaging window is longer
than all oscillation periods, the only modes contributing to the en-
ergy decay are those from real, positive poles, a subset of A € C
which we will denote as X € RY. Thus, the energy decay is

am=@m»zZ@W, (12)

where p; denotes the residues related to the subset of poles ;.
Comparing (2) and (12), it becomes apparent that the real, posi-
tive poles \; are identical to the slope decay rates &;, while the
corresponding residues p, take the role of x2:

(13a)
(13b)

2
Xi =

ﬁi7

The equivalence of these quantities also extends to their physical
significance. Recall that the decay rates J; are only dependent on
the room geometry and materials [9], with the amplitudes x? scal-
ing each term based on the combined positions and orientations
of sound sources and listeners, ¢. As discussed in Section 2.2,
the ART parameters A and T;(z) are only dependent on the room
geometry and materials — therefore, the same can be said about
the system poles A;. Conversely, the residues carry information
on ¢, as they are dependent on ART’s “injection” and “detection”
operators b and c. This aspect is explored in the following section.

3 Alternatively, via eigendecomposition of the state transition matrix.
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Figure 3: Block diagram of a common-slopes reverberator [9] with
parameters set using the proposed method. Gray lines indicate po-
sitional dependency data, while black lines indicate audio signals.
Each slope is controlled by a real, positive pole \; and the rela-
tive residue p; = P, ;py ;P. ;» With the terms p, ; and p, ; being
controlled by the source and listener position, respectively. Note
that the audio signals in this figure, including the input and output
signals, are defined in the energy domain — not pressure.

3.2. Residue estimation

The residue formulation in (11) can be expressed as the product of
three scalar terms:

Pi = Payi Po,i Pc,i s (14)
where
poi = w [T(\) ] i, (152)
po,i = w; b(N), (15b)
pei = ¢ (M) Ta(N) v . (15¢)

Note that p, 1, known in the literature as the undriven residue [20],
does not depend on the source or listener positions. Of the other
two terms, py,; only depends on the source position, and p,; only
on the listener position. If an interactive model is required, these
scalar terms can be applied separately, as shown in Fig. 3. Doing
50, pp,; and p.; will only need to be updated if and when* the re-
spective entity moves. This separation of the components based
on their role in the acoustic scene is possible thanks to the combi-
nation of ART operators’ significance from the physical modeling
perspective, and the equivalence in (13a) from the system theory
perspective.

It is worth noting the role of left and right eigenvectors in (15).
As anticipated in Section 1, the eigenvectors of a state-space model
are related to modes’ spatial distribution when the model’s state
variables are tied to space. Indeed, that is the case in ART, as the
state signals s(n) model the acoustic energy at specific locations,
and in specific directions (the “discrete directions” fundamental to
ART). By their definitions, b and ¢ encode respectively how much
energy the sound source “injects” in each discrete direction, and
how much energy the listener “detects” from each discrete direc-
tion. In light of this, (15b) may be interpreted as showing that the
left eigenvectors w; encode each mode’s susceptibility to energy
contributions from each discrete direction, and (15¢) as showing
that the right eigenvectors v; encode each mode’s contribution to
each discrete direction.

“If the sonic agents move relatively slowly, pb,i and p ; may be up-
dated sporadically, i.e. at a rate lower than the reverberators’ sample rate.
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3.3. Pole estimation

As mentioned in Section 2.3, the more technical details of pole-
finding are not discussed in this paper. Nevertheless, in this sec-
tion, we discuss some aspects of our proposed method — and of
ART models — that offer considerable advantages for the estima-
tion of the desired poles.

The first consideration to make is that the number /V of sought
poles A is much lower than the total number M of poles A, i.e. the
system order. As such, a full decomposition is not required. More-
over, as shown in [9] and corroborated by results in the following
section, a very small number N of slopes is usually sufficient to
achieve accurate energy decay.

Another important consideration regards the size and sparsity
of A. If the surface is divided into Np surface patches, the num-
ber of discrete directions is at most® L = N{. However, the only
nonzero elements of A are those relating pairs of discrete direc-
tions with a shared endpoint — in other words, the energy trans-
ferred from patch P; to P> may only be reflected into discrete di-
rections that start from P». Since the number of discrete directions
starting at any given patch can be no higher than Np (one outgoing
direction for each possible destination), the number of nonzero el-
ements of A can be no higher than L-Np = NS’ , whereas the size
of Ais N§ x Ng.

If the pole search is conducted via eigen-decomposition of the
state-transition matrix [21], the highly sparse nature of the matrix
can be leveraged to find the desired subset of poles with low mem-
ory requirements [26]. In this case, the right eigenvectors are found
simultaneously [21], and (10b) can be used to find their left coun-
terparts. Alternatively, the EAI approach [25, 20] can be modified
to focus on real, positive poles, and both left and right eigenvec-
tors can be found with (10). The discussion and comparison of
different approaches are left for future work.

3.4. Implementation

The proposed method’s implementation is summarized as follows.

1. Evaluation of the TD-ART recursive operators A and 7,
(performed offline);

Modal decomposition of the TD-ART model, providing the
most prominent real, positive poles )\;, the relative eigen-
vectors v;, w;, and the position-independent residue terms
Pa,; (performed offline);

Ray-tracing from the source and listener positions®, to eval-
uate the TD-ART position-dependent operators b(z), e(z),
and d(z) (performed at runtime, sporadically);

Computation of the position-dependent residue terms py, ;,
Pe,; as in (15) (performed at runtime, sporadically);

A set of time-invariant resonators is driven using the dy-
namic input-output weights p,, ;, . ; (runtime).

Note that, in situations with multiple sources and/or receivers, a
single set of resonators can be shared by all agents.

SIf a pair of patches has no mutual visibility, there can be no energy
transfer, and the discrete direction is not included in the model.

6Only one tracing step, i.e. one reflection order, is required for each
agent. These tracing operations may make use of directional transfer func-
tions, if desired.
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Figure 4: The environment used in the presented tests. Source and
listener positions are also reported in Table 1.

4. RESULTS

The proposed method was tested by modeling an environment con-
sisting of three coupled rooms with different absorption coeffi-
cients, 1 = 0.01, ap = 0.3, and a3 = 0.1, as illustrated in Fig. 4.
These are frequency-independent coefficients, and a broadband
analysis was carried out, leaving the test of multi-band applica-
tions for future work. Nine configurations were compared, with
three source positions and three listener positions, reported in Ta-
ble 1 and shown in Fig. 4. The surface was divided into 70 patches
with a maximum edge length of 3 m, producing a TD-ART model
with 2068 discrete directions (having excluded those with no vis-
ibility), with a sample rate of 500 Hz. Air absorption was not
modeled in any of the responses, and neither was edge diffraction.
Time spreading [17] was applied to the input and output operators,
but not to the propagation delays.

Fig. 5 shows the Energy Decay Curves (EDCs) of the pro-
posed common-slopes model with different numbers of slopes for
three of the tested source-listener configurations. In all configu-
rations, four slopes appear to be sufficient to achieve a very close
match with TD-ART. Expectedly, the common-slopes model with
only one slope does not capture the early behaviour correctly. The
abrupt decay it displays at the start of Fig. Sc is due to the line-of-
sight component, which is not present in the other two S-L config-
urations shown here.

Fig. 6 shows how the residue values change for different posi-
tions of the source and listener, for the three slopes with the longest
Te0. The source position is fixed in each subplot, while the listener
position is moved forming a grid with 0.2 m spacing, at a height
of 1.75m. As might be expected, the slope with the longest rever-
beration time has highest amplitude when both the source and the
listener are in the most reverberant room (room 1). The same can
be said of the slope with the second-longest reverberation time be-
ing tied to the second-most reverberant room (room 3). The third
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Table 1: Source and listener positions used in the presented tests.

S S2 s3 LI L2 L3
r(m) 2.1 58 72 19 78 93
ym) 19 41 65 65 27 92
zm) 15 15 15 175 1.75 1.75

most reverberant slope seems to be only loosely tied to room 2
— this is not too surprising, given the central location of room 2,
which makes it at least partially visible from most positions in the
other two.

In addition to the above, some observations relative to the
combinations of source and listener positions can be made. For
example, compare the sub-figures 6g and 6h. As already stated,
it can be seen that the amplitude of the most reverberant mode —
Fig. 6g — is largest when the listener is in room 1. However, said
amplitude is very low when compared to that of the second-most
reverberant mode — Fig. 6h — even when the listener is in room
1, and especially so at the positions from which room 3 is visible
through the doorway. A similar observation can be made compar-
ing Figs. 6d and 6f.

5. CONCLUSIONS

In this paper, we presented a method to retrieve both the decay rate
and amplitude parameters for a common-slopes reverberator from
the modal decomposition of an TD-ART model. By leveraging the
physical significance of the model’s eigenvectors, it is possible to
compute the position-dependent parameters of the model at inter-
active speeds, for arbitrary source and listener positions. In partic-
ular, we showed that the position-dependent amplitude of slopes
can be separated into three components: one that depends only
on the source position, one that depends only on the listener posi-
tion, and one that depends on neither; these terms can be updated
independently based on simulation requirements. Comparison of
EDCs showed that both the slopes’ decay rates and their positional
dependency are correctly captured by the proposed model, achiev-
ing a good match even with a very small number of slopes.

Future work will investigate important computational aspects
associated to the modal decomposition, including leveraging the
matrix sparsity to improve efficiency, as well as potential issues
with numerical accuracy when very small poles are evaluated. An-
other potential avenue for further research concerns the potential
of clustering similar modes by leveraging their physical signifi-
cance, i.e. grouping slopes with similar decay rates only if their
positional dependencies are also similar.
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Figure 5: EDCs for three different source-listener configurations:
S3-L1, S3-L2, and S3-L3 (see Table 1 and Fig. 4). Each plot com-
pares the EDC of the proposed model with different numbers of
slopes against TD-ART.
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Figure 6: Magnitude of the residues p, related to the three poles of largest magnitude. These plots were generated by placing the source at

one of the positions in Table 1 and evaluating the residue for different positions of the listener. Subfigures (a), (d), and (g) show the residues

related to the pole A1 = 0.991 (Tso = 3.065); (b), (e), and (h) those related to Az = 0.956 (Tso = 0.625); (c), (£), and (i) those related to
Az = 0.89 (Tso = 0.245s).
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