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ABSTRACT

The band-limited impulse invariance method is a recently pro-
posed approach for the discrete-time modeling of an LTI continuous-
time system. Both the magnitude and phase responses are accu-
rately modeled by means of discrete-time filters. It is an extension
of the conventional impulse invariance method, which is based on
the time-domain sampling of the continuous-time response. The
resulting IIR filter typically exhibits spectral aliasing artifacts. In
the band-limited impulse invariance method, an FIR filter is com-
bined in parallel with the IIR filter, in such a way that the fre-
quency response of the FIR part reduces the aliasing contribu-
tions. This method was shown to improve the frequency-domain
accuracy while maintaining the compact temporal structure of the
discrete-time model. In this paper, a new version of the band-
limited impulse invariance method is introduced, where the FIR
coefficients are derived in closed form by examining the discon-
tinuities that occur in the continuous-time domain. An analytical
anti-aliasing filtering is performed by replacing the discontinuities
with band-limited transients. The band-limited discontinuities are
designed by using the anti-derivatives of the Lagrange interpola-
tion kernel. The proposed method is demonstrated by a wave scat-
tering example, where the acoustical impulse responses on a rigid
spherical scatter are simulated.

1. INTRODUCTION

Continuous-time systems are often modeled in the discrete-time
domain by means of digital filters. A system function described in
the Laplace domain (s-domain) is commonly discretized by con-
verting it into the z-domain. Well-known textbook methods are
the bilinear transform, the impulse invariance method, and the
matched z-transform [1]. These methods typically suffer from
spectral deviations due to frequency warping or spectral aliasing.
Advanced methods for s-to-z mapping have been introduced to
improve the frequency-domain accuracy of the discrete-time mod-
els [2–6]. In audio applications, some methods focus more on
the magnitude response and allow phase distortions at high fre-
quencies, which is acceptable considering spectral resolution of
the human auditory system [7–10]. Other existing methods aim
for an accurate modeling both in terms of magnitude and phase
responses, which typically require higher filter orders [11, 12].

Another aspect of interest when assessing a discrete-time model
is the transient properties (e.g. of the impulse responses and step
responses). In a frequency-domain modeling, where the spectrum
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of a target system is sampled at discrete frequencies, the result-
ing impulse response usually exhibits smeared transient including
pre- and post-ringing. If the continuous-time system has an infi-
nite impulse response by nature (such as acoustic scattering, RLC
circuits, and mass-spring systems), a frequency-domain modeling
will exhibit temporal aliasing artifacts, as discussed in [13].

The band-limited impulse invariance method was introduced
by the authors in [12]. A continuous-time system function de-
scribed by partial fraction expansion is modeled by a parallel-
structure filter consisting of infinite impulse response (IIR) and
finite impulse response (FIR) filters. The IIR part is obtained by
using the conventional impulse invariance method which is based
on the time-domain sampling of the continuous-time impulse re-
sponse [14]. The FIR filter is designed in such a way that it cancels
the spectral aliasing caused by the IIR filters. In [12], an analyti-
cal approach is proposed for the FIR filter design. A closed-form
expression is derived for a discrete-time sequence that achieves
a perfect aliasing cancellation. Since the sequence is non-causal
and infinitely long, it is approximated by applying a finite-length
window function, yielding the FIR filter coefficients. A numerical
version of the band-limited impulse invariance method is intro-
duced in [15]. For this approach, the same IIR filter is used but
the FIR filter is designed numerically by minimizing the spectral
errors at control frequencies, constituting a least squares solution
to an over-determined problem.

In this paper, we propose a new analytical version of the band-
limited impulse invariance method. It is motivated by the fact
that the spectral aliasing is caused by sampling a discontinuity in
the time domain. A time-domain discontinuity typically exhibits
an infinite frequency bandwidth. An anti-aliasing filtering is per-
formed by replacing each discontinuity with a band-limited tran-
sient that is derived from a low-pass filter kernel. We employ the
Lagrange interpolation filter whose continuous-time impulse re-
sponse is described by a piece-wise polynomial. Since the FIR co-
efficients are described by polynomials, an efficient realization is
possible. This is an advantage compared to the previous methods,
where either the exponential integral functions have to be evalu-
ated [12] or a matrix inversion has to be performed [15].

The fundamental idea of this band-limitation approach was
initially introduced in the context of virtual analog modeling [16–
18], where geometrically shaped waveforms (e.g. square waves
and sawtooth waves) were synthesized by discrete-time systems.
In the subsequent studies, this method was adopted for nonlinear
system modeling [19]. A generalized treatment for higher-order
discontinuities was introduced in [20], and was applied for the
discrete-time realization of the radial functions in spherical har-
monics expansions.

This paper is structured as follows. Sec. 2 introduces disconti-
nuities of different orders and their analytical representations. The
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band-limited impulse invariance method using the Lagrange kernel
is presented in Sec. 3. The proposed method is evaluated by sim-
ulating the acoustical scattering of a rigid sphere. (Sec. 4). Sec. 5
concludes the paper.

2. HIGHER-ORDER DISCONTINUITIES

A time-domain sampling of a continuous-time signal with a given
sampling frequency fs (in Hz) introduces aliasing in the frequency
domain, if the continuous-time signal has spectral components be-
yond the Nyquist limit (|f | > fs

2
) [21]. The impulse response with

an auto-regressive part typically exhibits a discontinuity at t = 0,
which not only includes the jump discontinuity (here referred to
as the 0th-order discontinuity) but also the discontinuities in the
derivatives of different orders. The transient response Fk(t) of a
kth-order discontinuity can be represented by the (k + 1)th-order
anti-derivative of the Dirac delta function [18],

F0(t) =

∫ t

−∞
δ(τ) dτ = u(t) (1)

Fk(t) =

∫ t

−∞
Fk−1(τ) dτ =

tk

k!
u(t), (2)

where u(t) denotes the Heaviside step function. The Laplace trans-
forms of the respective discontinuity functions are given as [22]

L
{
Fk(t)

}
=

1

sk+1
, (3)

corresponding to an integrator of order k + 1. The corresponding
Fourier transform is obtained by evaluating (3) on the imaginary
axis, whose magnitude decay at the rate of −20·(k+1) dB/decade.
The spectral energy above the Nyquist limit thus decays faster for
higher k.

We define the discontinuity of a given function g(t) as the
difference between the limit from the left and the limit from right
to a point of interest,

η0(t) = lim
ϵ→0

[
g(t+ ϵ)− g(t− ϵ)

]
. (4)

This can be extended to the derivatives of the function. Assuming
that g(t) is k-times differentiable, the kth-order discontinuity is
defined as

ηk(t) = lim
ϵ→0

[
g(k)(t+ ϵ)− g(k)(t− ϵ)

]
, (5)

where the shorthand notation

g(k)(t) := dk

dtk
g(t) (6)

is used for convenience. η0(t) in Eq. (4) corresponds to the 0th-
order discontinuity as indicated by the subscript ‘0’.

The discontinuity analysis of a continuous-time impulse re-
sponse is essential for the proposed band-limitation approach. In
the following subsections, the higher-order discontinuities are de-
rived for commonly used system functions. We consider causal
and stable systems exclusively. Hence, the impulse response is
right-sided and decays for t → ∞. The real part of poles is always
negative, and the region of conversion includes the imaginary axis
[21]. Since the discontinuities at t = 0 are of our main interest,
we will omit the time argument of the discontinuity (5) and use the
notation ηk(0) → ηk in the remainder.

2.1. First-Order Section with a Single Pole

A first-order section system is described by a single pole p ∈ C
and a residue q ∈ C, whose Laplace-domain transfer function
reads

GFOS(s) =
q

s− p
(7)

and the corresponding impulse response is given as

gFOS(t) = q · eptu(t). (8)

The kth-order derivative of the impulse response reads

g
(k)
FOS (t) =

{
q · pk · ept, t > 0

0, t < 0.
(9)

which is continuous except for t ̸= 0. Plugging (9) into (5) yields
the discontinuity occurring at t = 0,

ηk = q · pk. (10)

2.2. Second-Order Section with Complex Conjugate Poles

A second-order section is a sum of two first-order sections with
complex conjugate poles and residues,

GSOS(s) =
q

s− p
+

q∗

s− p∗
(11)

and the corresponding impulse response is

gSOS(t) =
(
q · ept + q∗ · ep

∗t) u(t) (12)

= 2|q|eσ0t cos(ω0t+ ϕq) u(t), (13)

where q = |q| · eiϕq and p = |p| · eiθp = σ0 + iω0. The imagi-
nary unit is denoted by i. The kth-order derivative of the impulse
response reads

g
(k)
SOS (t) =

{
2 |q| |p|keσ0t cos

(
ωt+ ϕq + kθp

)
, t > 0

0, t < 0.
(14)

The discontinuities at t = 0 are obtained by using (14) and (5),
yielding

ηk = 2 |q| |p|k cos(ϕ+ kθp). (15)

Eq. (15) can also be derived by using (10) for the complex conju-
gate poles and residues.

2.3. Multiple Poles

The partial fraction expansion of a system function may include
multiple-pole terms [21, Ch. 4],

GMUL(s) =
q

(s− p)µ+1
, (16)

where the pole multiplicity is (µ+1). The corresponding impulse
response is

gMUL(t) = q
tµ

µ!
· eptu(t). (17)
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The derivatives of the impulse response are

g
(k)
MUL(t) =

{
q ept tµ−k ∑k

l=0(
k
l )

(pt)l

(µ−k+l)!
, t > 0

0, t < 0,
(18)

with ( k
l ) =

k!
l!(k−l)!

denoting the binomial coefficient. Following
(5) and (18), the discontinuities at t = 0 are

ηk =

{
0, k < µ

q · ( k
µ ) · pk−µ, k ≥ µ.

(19)

The impulse response of an (µ + 1)th-order multi-pole system is
thus continuous up to the (µ− 1)th-order derivative.

3. BAND-LIMITATION USING LAGRANGE KERNEL

The underlying principle of the proposed method is to apply an
anti-aliasing filter (low-pass filter) to the time-domain discontinu-
ities. This is performed by replacing the discontinuity functions
Fk(t) with band-limited discontinuity functions Hk(t). Analo-
gous to (1) and (2), Hk(t) is represented as an anti-derivative of a
low-pass kernel hLPF(t),

H0(t) =

∫ t

−∞
hLPF(τ) dτ (20)

which can be generalized to higher-order anti-derivatives,

Hk(t) =

∫ t

−∞
Hk−1(τ) dτ. (21)

The difference between the full-band Fk(t) and band-limited Hk(t)
discontinuities is called the residual function in the literature [17,
18],

Dk(t) := Hk(t)− Fk(t). (22)

The residual function Dk(t) corresponds to the high-pass filtered
component of the full-band discontinuity with reversed polarity
(out-of-phase). Adding the residual function with the full-band
discontinuity thus cancels the high-frequency components,

Hk(t) = Fk(t) +Dk(t), (23)

yielding a band-limited impulse response that can be sampled with
reduced aliasing. In the proposed method, the full-band disconti-
nuity Fk(t) and the residual function Dk(t) are realized in the
discrete-time domain by means of IIR filter and FIR filter, respec-
tively. The output of the two filters exhibit the same aliasing ar-
tifacts but with opposite polarity. Therefore, superimposing the
discrete-time sequences cancels the aliasing distortions. Following
(1), (2), (21) and (22), it can be shown that the residual function
is the anti-derivative of the difference between the low-pass kernel
and the Dirac delta function,

D0(t) =

∫ t

−∞

[
hLPF(τ)− δ(τ)

]
dτ (24)

Dk(t) =

∫ t

−∞
Dk−1(τ) dτ. (25)

It is of main interest to find a discrete-time model for the residual
functions Dk(t).

In this paper, we use the impulse response of a Lagrange in-
terpolator as the low-pass filter kernel. Only odd-order Lagrange
kernels are considered, as they are known to have superior spectral
properties [23]. For a desired FIR length M , M + 2 equidistant
nodes are placed between −M+1

2
T and M+1

2
T , where the node

distance is equal to the sampling period T := 1
fs

The Lagrange
kernel is defined within the M + 1 intervals as

h(t) =

∏M
ν=0,ν ̸=µ(

t
T
+M − µ− ν)

(−1)µ µ! (M − µ)!
, (26)

if t
T

∈ [−M+1
2

+ µ,−M+1
2

+ µ + 1] for µ = 0, . . . ,M , and
h(t) = 0, otherwise. It has a finite temporal support and is de-
scribed by piece-wise polynomials. The band-limited discontinu-
ities Hk(t) are the anti-derivatives of the Lagrange kernel (26).
The integration constants have to be chosen in such a way that
Hk(t) is continuous at the nodal points [18]. It is known that
the frequency response of a Lagrange interpolation kernel exhibits
maximum flatness at DC [23, 24]. Therefore, it can be integrated
M times without causing instabilities. This allows us to use the
Lagrange kernel for the band-limitation of higher-order disconti-
nuities if k ≤ M . Note that the resulting band-limited discontinu-
ities Hk(t) and the full-band discontinuities Fk(t) (cf. (2)) have
polynomial representations. The corresponding residual functions
Dk(t) are also described by piece-wise polynomials within the in-
tervals. This allows an efficient realization of the residual func-
tions.

The FIR coefficients are obtained by sampling the residual
functions and scaling by the discontinuities ηk,

h(FIR)[n] = T ·
K∑

k=0

ηk ·Dk

(
(n− M−1

2
) · T

)
, (27)

where n denotes the discrete-time sample index. The maximum
discontinuity order (denoted by K) must be less than or equal to
the Lagrange polynomial order M . Note that a group delay of
M−1

2
samples is applied to ensure the causality of the filter. Fi-

nally, the overall filter is constructed by combining the FIR filter
with the IIR filters,

G(z) =
M∑

m=0

h(FIR)[n]z−m + z−
M−1

2
qT

1− epT z−1
. (28)

The IIR part is obtained by applying the conventional impulse in-
variance method to a continuous system. A first-order system is
considered for convenience. The IIR part is delayed by M−1

2
sam-

ples for a proper time alignment with the FIR part, which is cru-
cial for the aliasing cancellation. The overall discrete-time model
is thus delayed by M−1

2
· T seconds compared to the continuous-

time counterpart.
Note from (27) that the discontinuities ηk are the only terms

that depend on the target system. The residual functions Dk(t)
can be pre-computed once the FIR length (or equivalently the La-
grange polynomial order) is chosen. The proposed method is thus
suited for dynamic scenarios where the filter coefficients have to
be changed constantly. This is a clear advantage in comparison
with the previous methods. In the analytical approach [12] the ex-
ponential integral function has to be evaluated every time the target
system is updated. The numerical approach [15] requires the com-
putation of the pseudo inverse of a matrix.
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4. EVALUATION

The performance of the proposed method is demonstrated by sim-
ulating the acoustical impulse responses of a point source evalu-
ated at the surface of a rigid sphere. Such a configuration is often
considered in spatial sound capture using spherical microphone
arrays [25–27]. It is of importance to achieve a high spectral accu-
racy in terms of magnitude and phase, while preserving the tem-
poral structure of the impulse responses.

The position of the point source is denoted by xs = (rs, θs, ϕs)
where rs is the radius from the origin of the coordinate system,
θs ∈ [0, π] the colatitude angle from the z-axis, and ϕs ∈ [0, 2π)
the azimuth angle from the x-axis. The receiver position on the
rigid sphere is denoted by x = (R, θ, ϕ) with R denoting the
radius of the sphere. The acoustic transfer function from the source
to the receiver can be expressed as a modal expansion (rs > R)
[28, Sec. 4.2],

S(x, ω) =
∞∑

ν=0

2ν + 1

4π
Pν(cosΘs)

−hν(
ω
c
rs)

ω
c
R2h′

ν(
ω
c
R)

, (29)

where Pν(·) denotes the Legendre polynomial of order ν and hν(·)
the νth-order spherical Hankel function of the second kind. The
prime symbol (·)′ denotes the derivative with respect to the argu-
ment. The angle between x and xs is denoted by Θs. ω = 2πf
denotes the angular frequency and c the speed of sound. The time
harmonic term eiωt is omitted for brevity. By exploiting the ex-
plicit formula [29, Eq. (10.49.7)] and the recurrence relation [29,
Eq. (10.51.2)] of the the spherical Hankel functions, (29) can be
expressed in the Laplace domain as [13]

S(x, s) =
c

4πrsR
e−

rs−R
c

s
∞∑

ν=0

(2ν + 1)Pν(cosΘs)Aν(s) (30)

which is the analytic continuation in the complex plane (i.e. iω is
substituted with s). The modal spectrum Aν(s) can be described
by a fractional function or a partial fraction expansion,

Aν(s) =

∑ν
k=0 βν,k(

rs
c
)k−nsk∑ν+1

k=0 γν,k(
R
c
)k−n−1sk

(31)

=
ν∑

k=0

qν,k
s− pν,k

. (32)

Please refer to [13, 15] for a thorough derivation. The poles and
zeros of the system function respectively correspond to the roots of
the denominator and numerator of Aν(s). As depicted in Fig. 1,
the poles and zeros are distinct and their real parts are negative.
The partial fraction expansion (32) constitutes a parallel-structure
filter which consists of first- and second-order section filters. The
system function (31) can also be realized as a cascaded system as
discussed in [30].

The continuous-time system (32) is now modeled by the pro-
posed band-limited impulse invariance method. The radius of the
rigid sphere is assumed to be R = 0.042m. The Lagrange polyno-
mial order is set to M = 15, which corresponds to an FIR length
of LFIR = 15 taps. A band limitation is applied up to the 10th-
order discontinuity (K = 10). The simulation is performed at the
sampling rate of 48 kHz. The speed of sound is assumed to be
c = 343m/s.

The following methods are considered for comparison. The
respective abbreviations will be used in the remainder.
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Figure 1: Laplace-domain zeros and poles describing the modal
transfer functions on a rigid sphere, cf. (29)–(32). The zeros cor-
respond to the roots of the spherical Hankel functions hn(·) and
the poles to the roots of their derivatives h′

n(·). Zeros/poles for the
same orders (ν = 0, . . . , 10) are connected with gray lines. For the
ease of visualization, rs

c
= R

c
= 1 is considered. Note that only

the poles are directly used by the proposed discrete-time model.
The effect of the zeros are implicitly included via the residues qν,k
of the partial fraction expansion (32).

• The conventional impulse invariance method (IIM), which
is based on time-domain sampling [14]. The discrete-time
model has only IIR filters.

• The analytical band-limited impulse invariance method (A-
BLIIM) [12]. The FIR coefficients are given in a closed
form described by the exponential integral functions.

• The numerical version of the band-limited impulse invari-
ance method (N-BLIIM) [15]. The FIR coefficients are
computed in a least-square-error sense. The spectral errors
are minimized at 2× LFIR control frequencies that are log-
arithmically distributed between 2Hz and 24 kHz.

• The proposed band-limited impulse invariance method us-
ing Lagrange polynomial kernel (P-BLIIM).

• Frequency-sampling method (FSM), where the desired modal
spectrum (29) is sampled at 216 uniform frequencies [31].
The modal impulse response is then obtained by the inverse
discrete Fourier transform.

All methods except for FSM have the same IIR filters that are de-
signed by IIM. For a fair comparison, the same FIR length is used
for the three band-limited impulse invariance methods (A-BLIIM,
N-BLIIM, and P-BLIIM).

Fig. 2 shows the modal spectra (ν = 0, . . . , 10) resulting
from the discrete-time models. The magnitude spectra are de-
picted in the top row and the corresponding spectral errors in the
bottom row. The original spectra (29) are shown as a reference in
Fig. 2(a). The FSM exhibits a perfect spectral accuracy by design,
thus the magnitude responses are identical to those in Fig. 2(a).
For the N-BLIIM (Fig. 2(d)), the control frequencies are indi-
cated by black crosses ‘×’ in the bottom row. It can be seen that
the discrete-time model by the IIM have excessive magnitude re-
sponses near the Nyquist limit, which is due to aliasing artifacts.
The spectral distortion increases for higher modal orders. This is
attributed to the fact that the imaginary part of the poles is get-
ting closer to the Nyquist frequency thereby causing more aliasing
artifacts, cf. Fig. 1(right). It is worth noting that, for the IIM,
the spectral deviation is spread throughout the whole frequency
band. Since the continuous-time spectrum decays rather slowly
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(−20 dB/decade), the spectral repetitions due to aliasing have
a global effect. The results for the band-limited impulse invari-
ance methods (A-BLIIM, N-BLIIM, and P-BLIIM) clearly show
the benefit of using an FIR filter in addition to the IIR filter, cf.
Fig. 2(c), Fig. 2(d), and Fig. 2(e). The magnitude responses near
the Nyquist frequency are in a close agreement with the desired
spectra. In comparison with the result of the IIM, the spectral devi-
ations are reduced considerably. In terms of spectral accuracy, both
N-BLIIM and P-BLIIM outperform the A-BLIIM below 10 kHz.
The performances at higher frequencies are similar to each other.
While the spectral deviations for P-BLIIM change more gradually
over frequency, the accuracy of N-BLIIM is strongly dependent on
the distribution of the control frequencies which is often chosen
heuristically. The increased spectral deviations near the Nyquist
limit can be explained by the fact that the anti-aliasing filter is not
ideal and has a gradual transition between the pass-band and stop-
band. As depicted in Fig. 3, the spectral accuracy of P-BLIIM
can be improved by increasing the FIR filter length. Discrete-time
models with longer FIR filters achieves better accuracy near the
Nyquist limit. The improvement comes at the expense of a longer
non-causal part in the impulse responses.

In order to investigate the temporal properties of different mod-
els, the impulse responses on the sphere are examined. The im-
pulse response of each mode is first computed by exciting the
discrete-time filters with a discrete-time impulse δ[n]. For the
FSM, the modal impulse responses are obtained by computing the
inverse discrete Fourier transform of the modal spectra. The indi-
vidual modal impulse responses are then linearly combined using
the modal expansion, analogous to (29) and (30). The expansion is
computed up to the 10th order. A point source is placed on the x-
axis with 1m distance from the origin (rs = 1m, θs = 90◦, ϕs =
0◦), and receivers are arranged along the equator of the sphere
(R = 0.042m, θ = 90◦, ϕ ∈ [−180◦, 180◦]). Note from (30)
that the wave propagation from the source to the nearest point on
the sphere corresponds to a delay of rs−R

c
. Since the delay is gen-

erally not an integer multiple of the sampling period T , a fractional
delay filter might be needed for an accurate discrete-time model-
ing [32]. However, this is beyond the scope of this paper, and we
assume that the delay is ideally modeled. Our focus is on the eval-
uation of the modal responses, represented by Aν(s) in (30).

Figure 4 shows the directional impulse responses at the re-
ceiver positions. The absolute amplitudes are depicted in dB-
scale as indicated by the color-map. The considered discrete-time
models exhibit different delays. For visualization purposes, the
impulse responses are aligned and the time axes are adjusted ac-
cordingly. The time-of-arrival of the first impulse on the sphere is
tTOA = rs−R

c
≈ 2.973ms, which coincides with the onset of the

impulse responses for IIM. For the band-limited approaches (A-
BLIIM, N-BLIIM, and P-BLIIM), there are components that arrive
earlier than the theoretical time-of-arrival tTOA. These non-causal
parts correspond to the left-half of the FIR filters, which precede
the IIR filter by LFIR−1

2
= 7 samples or τFIR = LFIR−1

2
· T ≈

0.146ms. The influence of the FIR filters are observed within the
interval t ∈ [tTOA − τFIR, tTOA + τFIR], where minor differences
can be seen among the three methods. Since the same IIR filters
are used by all methods except for FSM, the impulse responses
are identical for t > tTOA + τFIR. The FSM yields considerably
different results. The impulse responses exhibit strong pre- and
post-ringing spanned over the entire time range. In the later part
of the impulse response (t > 3.5ms), the post-ringing dominates
the actual impulse response because it decays slower than the lat-

ter. The spatio-temporal structure of the impulse response is hardly
identifiable.

The results show that FSM and IIM are two extreme cases.
The FSM achieves a perfect spectral accuracy at the expense of
strong temporal artifacts. The IIM models the temporal profile
of the impulse response accurately but the resulting frequency re-
sponse deviates from the original spectrum. In both methods, in-
creasing the sampling frequency mitigates the problems. The re-
sulting discrete-time models then become similar to each other [30].
The band-limited impulse invariance methods can be used to bal-
ance between the temporal and spectral fidelity. The discrete-
time model can be configured straightforwardly by varying the
Lagrange polynomial order and the maximum discontinuity order
that needs to be low-pass filtered. Increasing the length of the FIR
improves the accuracy in the frequency domain. A shorter FIR fil-
ter might be preferred if a compact transient response is of interest.

5. CONCLUSION

A new version of the band-limited impulse invariance method is
presented. The proposed discrete-time model relies on the par-
tial fractional expansion of the system function in the Laplace do-
main. The resulting discrete-time model is a parallel combina-
tion of FIR and IIR filters. The IIR filter is obtained by using the
conventional impulse invariance method which typically produces
aliasing artifacts. The FIR filter is then used to cancel the spectral
distortion caused by the aliasing. The FIR coefficients are derived
based on the discontinuity analysis of the continuous-time impulse
response. By using the Lagrange kernel which is described by
piece-wise polynomials, an analytical low-pass filtering is applied
to time-domain discontinuities of different orders. Since the FIR
filter coefficients are described by polynomials, the implementa-
tion requires low computational complexity. Moreover, the filter
can be constructed by linearly combining pre-computed sequences
which correspond to the so-called residual functions. If the target
system changes, only the discontinuity coefficients have to be up-
dated. This facilitates an efficient realization in dynamic scenarios.
The performance of the method is demonstrated by simulating the
acoustical scattering of a rigid sphere. It was shown to be compara-
ble with the analytical and numerical versions of the band-limited
impulse invariance methods that have been previously introduced.
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