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ABSTRACT
We present GRAFX, an open-source library designed for handling
audio processing graphs in PyTorch. Along with various library
functionalities, we describe technical details on the efficient paral-
lel computation of input graphs, signals, and processor parameters
in GPU. Then, we show its example use under a music mixing sce-
nario, where parameters of every differentiable processor in a large
graph are optimized via gradient descent. The code is available at
https://github.com/sh-lee97/grafx.

1. INTRODUCTION

Motivation — Under the umbrella of so-called differentiable sig-
nal processing [1, 2], numerous attempts have been made to import
existing audio processors to automatic differentiation frameworks,
e.g., PyTorch [3]. Differentiable processors, as standalone mod-
ules, allow gradient-based optimization of their parameters. Alter-
natively, they can be used to train a neural network as a parameter
estimator [4, 5]. In either case, as the processors are identical to or
approximate the real-world ones, the obtained parameters are easy
to interpret and control. To further leverage this advantage of dif-
ferentiable signal processing, it would be desirable to consider the
composition of processors since it is a standard real-world practice.
In a more general setting, this composition can be represented in a
graph format [6]. Yet, there are few public implementations [1, 7]
that provide highly flexible graph-related functionalities.

Contributions — In response, we present a library called GRAFX
that allows users to handle audio processing graphs and their ap-
plications in PyTorch. Along with the open-source code, this
demonstration paper serves multiple purposes. First, we highlight
the library’s core components and applications. This includes our
custom data structures that allow the creation and modification of
graphs, computation of output signals, and potential use as input
of graph neural networks (GNNs) [6]. Second, we dive into the
heart of GRAFX, an optimized processing algorithm that computes
the output audio from graphs, source audio, and processor param-
eters. Unlike the previous implementations [1, 7], ours allows the
change of the graph for every optimization step. This is useful in
multiple scenarios, e.g., training a GNN that predicts the parame-
ters of given graphs [6] or pruning a graph with gradient descent
[8]. Also, we use batched node processing faster than the conven-
tional “one-by-one” computation of processors. Third, our library
is complemented with various differentiable processors; we report
their technical details. Finally, we describe how we used GRAFX
to create the music mixing graphs in our companion paper [8] and
evaluate the speedup we obtain with the batched node processing.
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2. AUDIO PROCESSING GRAPHS IN GPU

Definitions — We write an audio processing graph as G = (V,E)
where V and E are the node and edge set, respectively. Each node
vi ∈ V can represent a processor fi with a type ti, e.g., reverb r.
It takes M signal(s) ui[n] and a collection of parameter tensors pi
as input and produces N output(s) yi[n] (n denotes a time index).

y
(1)
i [n], · · · , y(N)

i [n] = fi
(
u
(1)
i [n], · · · , u(M)

i [n], pi
)
. (1a)

u
(l)
i [n] =

∑
(j,k)∈N+(i,l)

y
(k)
j [n]. (1b)

Here, N+(i, l) denotes a collection of nodes and channel indices
that send their output signals to lth input of node i. With this setup,
each edge eij ∈ E becomes a “cable” connecting two nodes. Note
that each edge also requires a type attribute tij = (k, l), a tuple of
input and output channel indices, unless every processor in a graph
is a single-input single-output system (SISO), i.e., M = N = 1.
In short, each node’s outputs can be computed by finding its in-
puts, aggregating those, and processing the sums with the parame-
ters. The graph output can be obtained by repeating this procedure
over all nodes in topological order, starting from input nodes i un-
til we reach the output nodes o. We allow any graph except those
with cycles, as feedback loops are hard to resolve and bottleneck
the processing speed due to the forced sample-level recursion.

Graph representations — There are two main use scenarios when
handling the audio processing graphs. First, users may create and
modify a graph. For this case, we provide a mutable data structure
GRAFX (same as the library name). It inherits MultiDiGraph
class from networkx [9] and provides additional functionalities,
e.g., adding a serial chain of processors. Second, each graph can
be used to compute output audio or fed into a GNN. In such cases,
representing each graph as a collection of tensors is more conve-
nient and efficient. Therefore, we provide a GRAFXTensor class,
which is compatible with Data class from torch_geometric
[10]. The following are the tensors we use to describe each graph.
First, we have a node type vector TV ∈ N|V |, an edge index ten-
sor E ∈ N2×|E|, and an (optional) edge type tensor TE ∈ N2×|E|

where | · | denotes the size of a given set. All parameters are col-
lected in a dictionary P whose key is a node type t and value P[t]
contains the parameters of that type. In this paper, we assume that
the value is a single tensor in a form P[t] ∈ R|Vt|×Nt where |Vt|
and Nt are the number of nodes and parameters. In fact, we allow
P[t] to be a tensor with more dimensions or even a dictionary of
tensors; we omit such cases for simplicity. All sources are stacked
to a single tensor S ∈ RK×C×L where K, C, and L are the num-
ber of sources, channels, and length, respectively. We ensure that
all the tensors, TV , TE , E, P, and S, share the same node order.
For example, a kth source sk[n] must correspond to the first kth

input i in the node type list TV . Likewise, an lth type-t parameter
P[t]l ∈ RNt must correspond to the lth type t in the type list TV .
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(a) Target graph
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(b) Optimal schedule

12

6

11

5

10

4

9

3

8

2

2

2

7

3

1

1

0

0

0

0

0

(c) Greedy schedule
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(d) One-by-one processing

i: input, o: output, m: mix, e: equalizer, c: compressor, g: gain/panning.

Figure 1: Various schedules for batched node processing. For each
schedule, the processing orders are shown inside the nodes.

Batched processing — For faster computation in GPU, maximiz-
ing the parallelism is desirable, and batched processing is the most
standard approach. Note that we have 3 levels of batched process-
ing. First, we may want source-level parallelism, i.e., processing
batches of multiple input sources with a single graph. This can be
easily achieved when every processor supports batched processing.
Next, we can consider node-level parallelism, processing multiple
nodes with the same type simultaneously. Specifically, consider a
sequence of N + 1 node subsets V0, · · · , VN ⊂ V satisfying the
following conditions.

(i) It forms a partition: ∪nVn = V and Vn∩Vm = ∅ if n ̸= m.
(ii) It is causal: no path from u ∈ Vn to v ∈ Vm exists if n ≥ m.

(iii) Each subset Vn is homogeneous: it has only a single type tn.

Then, we can compute a batch of output signals Yn of each subset
Vn sequentially, from n = 0 to N . Consequently, we reduce the
number of the gather-aggregate-process iterations from |V | to N
(we have no processings for n = 0 as V0 contains input modules).
Figure 1 shows an example. For a graph with |V | = 21 nodes (1a),
we can obtain a sequence with N = 9 (1b). Finally, equipped with
this batched node processing, we can also achieve graph-level par-
allelism; we can simply treat a batch of multiple graphs as a single
large disconnected graph. Therefore, we will focus on the batched
node processing for the remainder of this section.

Type scheduling — For a maximized node-level parallelism, we
want to find the shortest node subset sequence. This is a variant of
the scheduling problem. First, we always choose a maximal subset
Vi when the type ti is fixed. This makes the subset sequence equiv-
alent to a type string, e.g., iecgrmegro for 1b. We also choose
the first and the last subset, V0 and VN , to have all of the input and
output nodes, respectively. Since the search tree for the shortest
sequence exponentially grows, the brute-force search is too expen-
sive for most graphs. Instead, we may try the greedy method that
chooses a type with the largest number of computable nodes (1c).
However, this usually results in a longer sequence, thus slower
processing. We can alleviate this issue with the beam search, i.e.,
keeping multiple best schedules as candidates instead of one. In-
tuitively, the batched node processing is effective for graphs with
fewer types and a certain structure, e.g., ones that apply processors
in the same order for every input (e.g., see Figure 2b).

Algorithm 1 Batch computation of audio processing graphs.

Input: Types TV and TE , edges E, parameters P, and inputs S
Output: Output signals Y and (optional) intermediate signals U

1: T̄, N ← ScheduleBatchedProcessing(TV ,E)
2: σ ← OptimizeNodeOrder(T̄,TV ,E)
3: TV ,E,P← Reorder(σ,TV ,E,P)
4: IG, IP, IA, IS ← GetReadWriteIndex(T̄,TV ,E,TE ,P)
5: U← Initialize(S,TV )
6: for n← 1 to N do
7: Ūn ← Gather(U, IGn ) ▷ index_select
8: Un ← Aggregate(Ūn, I

A
n ) ▷ scatter

9: Pn ← Gather(P[t̄n], I
P
n) ▷ slice

10: Yn ← Process(t̄n,Un,Pn)
11: U← Store(U,Yn, I

S
n) ▷ slice

12: end for
13: Y ← YN

14: return Y,U

Implementation details — Algorithm 1 obtains the output Y from
the prescribed inputs (inside the following parentheses denote the
line numbers). First, we schedule the batched node processing and
obtain a node type list T̄ ∈ NN+1 (1). Next, as the main batched
processing loop (6-12) contains multiple memory reads/writes, we
calculate the node reordering σ that achieves contiguous memory
accesses and improves the computation speed (2). This procedure
allows memory accesses via slice, as shown in the comments
of Algorithm 1. After reordering the graph tensors with σ (3), we
retrieve lists of indices, IG, IP, IA, and IS, used for the tensor
read/writes in the main loop (4). Note that all these steps (1-4)
are done in CPU and, in most cases, in multiple separate threads.
Therefore, they do not bottleneck the GPU and optimization. Af-
ter the preprocessing, we create an intermediate output tensor U,
which will have a shape of |V | ×C ×L if all processors are SISO
systems or Nsum × C × L where Nsum denotes the total num-
ber of outputs in the graph (5). As we put all the inputs to be the
first partition V0, it can be initialized with simple concatenation:
U = S ⊕ 0. The remaining repeats batched processing and nec-
essary reads/writes (6-12). For each nth iteration, we collect the
previous outputs Ūn that are routed to the current partition nodes.
We achieve this by accessing the intermediate tensor U with the in-
dex IGn with index_select (7). Then, we aggregate them using
scatter if multiple edges are connected to some nodes (8). We
can similarly obtain a parameter tensor Pn with its corresponding
index IPn . Especially, our node reordering (3) makes this a simple
slice, faster than the usual index_select. With the obtained
input signals Un ∈ R|Vn|×C×L and parameters Pn ∈ R|Vn|×Nt ,
we batch-compute the node outputs Yn (10). Then, we save them
to the intermediate output tensor U with the slice index ISn (11)
so that the remaining steps can access them as inputs. After the it-
eration, we have all node outputs saved in U. The final graph out-
puts are given as output of the last step Y = YN ∈ R|VN |×C×L

since we set the last node partition VN to collect all output nodes.

3. DIFFERENTIABLE AUDIO PROCESSORS

We report the differentiable audio processors that we provide. By
default, they accept and produce stereo signals, i.e., C = 2. All the
hyperparameters, e.g., the number of filter taps, are ones used in
the companion paper [8]. We use FlashFFTConv [11] for every
causal convolution to speed up the processing and save memory.
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Gain/panning — We use simple channel-wise constant multipli-
cation. Its parameter vector pg ∈ R2 is in log scale, so we apply
exponentiation before multiplying it to the stereo signal.

y[n] = exp(pg) · u[n]. (2)

Stereo imager — We multiply the side signal, i.e., left minus right,
with a gain parameter ps ∈ R to control the stereo width. The mid
and side outputs are given as

ym[n] = ul[n] + ur[n], (3a)
ys[n] = exp(ps) · (ul[n]− ur[n]). (3b)

Then, we convert the mid/side output to a stereo signal back as fol-
lows, yl[n] = (ym[n] + ys[n])/2 and yr[n] = (ym[n]− ys[n])/2.

Equalizer — We use a single-channel zero-phase FIR filter. Con-
sidering its log-magnitude as a parameter pe, we compute inverse
FFT (IFFT) of the magnitude response and multiply it with a Hann
window vHann[n]. As a result, the length-N FIR is given as

he[n] = vHann[n] · 1
N

N−1∑
k=0

exp pe[k] · wkn
N (4)

where−(N+1)/2 ≤ n ≤ (N+1)/2 and wN = exp(j ·2π/N).
We compute the final output by applying the same FIR to both the
left and right channels as follows,

yx[n] = ux[n] ∗ he[n] (x ∈ {l, r}). (5)

We set the FIR length to N = 2047. Therefore, the parameter pe
has a size of 1024.

Reverb — We use a variant of the filtered noise model [1]. First,
we create 2 seconds of uniform noises, um[n] and us[n]. Next, we
apply a magnitude mask Mx[k,m] to each noise’s STFT Ux[k,m]
as follows,

Hx[k,m] = Ux[k,m]⊙Mx[k,m] (x ∈ {m, s}). (6)

where k and m denote frequency and time frame index. Each mask
is parameterized with an initial coloration H0

x [k] and an absorption
filter H∆

x [k] both in log magnitudes as follows,

Mx[k,m] = exp(H0
x [k] + (m− 1)H∆

x [k]). (7)

Next, we convert the masked STFTs to the time-domain responses,
hm[n] and hs[n]. We obtain the desired FIR hr[n] by converting
the mid/side to stereo. We apply channel-wise convolutions to the
input u[n] and get the output y[n]. The FFT and hop lengths are
384 and 192, respectively. The parameter pr has a size of 768 (2
channels, each with 2 filters with 192 magnitudes).

Compressor — We implement the canonical feed-forward digital
compressor [12]. First, for a given input audio, we sum the left and
right channels to obtain a mid signal um[n]. Then, we calculate its
energy envelope Gu[n] = log gu[n] where

gu[n] = α[n]gu[n− 1] + (1− α[n])u2
m[n]. (8)

Here, the coefficient α[n] is typically set to a different constant for
an “attack” (where gu[n] increases) and “release” (where gu[n] de-
creases) phase. As this part (also known as ballistics) bottlenecks
the computation speed in GPU, following the recent work [5], we
restrict the coefficients to the same value α. By doing so, Equation

8 simplifies to a one-pole IIR filter, whose impulse response up to
a finite length N can be exactly obtained in parallel as follows,

henv[n] = (1− α)αn. (9)

Therefore, the energy envelope gu[n] can be simply computed as a
convolution between the FIR henv[n] and the energy signal u2

m[n].
Next, we calculate the compressed energy envelope Gy[n]. We
use a quadratic knee, interpolating the compression and the bypass
region. For a given threshold T and half of the knee width W ,

Gy[n] =


Gabove

y [n] Gu[n] ≥ T +W,

Gmid
y [n] T −W ≤ Gu[n] < T +W,

Gbelow
y [n] Gu[n] < T −W

(10)

where, for a given compression ratio R, each term is

Gabove
y [n] = T +

Gu[n]− T

R
, (11a)

Gmid
y [n] = Gu[n] +

( 1

R
− 1

) (Gu[n]− T +W )2

4W
, (11b)

and Gbelow
y [n] = Gu[n]. Finally, we can compute the output as

yx[n] = exp(Gy[n]−Gu[n]) · ux[n] (x ∈ {l, r}). (12)

The scalar parameters introduced above, α, T , W , and R, are con-
catenated and used as a parameter vector pc ∈ R4.

Noisegate — It is identical to the compressor above, except for the
gain computation: we set Gabove

y [n] = Gu[n] and

Gmid
y [n] = Gu[n] + (1−R)

(Gu[n]− T −W )2

4W
, (13a)

Gbelow
y [n] = T +R(Gu[n]− T ). (13b)

Multitap delay — We use a 2 seconds of delay effect with at most
one delay dm at every 100ms (therefore, the number of delay taps
is M = 20). Each delay is filtered with an FIR cm[n], parameter-
ized in the same way as the zero-phase equalizer but with 39 taps.
Separate delays and filters are used for each left and right channel,
but we will omit this for simplicity. Under this setting, the multitap
delay’s FIR is given as follows,

hd[n] =
M∑

m=1

cm[n] ∗ δ[n− dm] (14)

where δ[n] is an unit impulse. Here, we aim to optimize each delay
length dm ∈ N, which is discrete, using gradient descent. To this
end, we exploit the fact that each delay δ[n − dm] corresponds to
a complex sinusoid in the frequency domain. Recent work showed
that the sinusoid’s complex angular frequency zm ∈ C can be
optimized with the gradient descent when we allow it to be inside
the unit disk, i.e., |zm| ≤ 1 [13]. We leverage this finding; for each
delay, we compute a damped sinusoid with the angular frequency
zm. Then, we use its inverse FFT as a surrogate of the delay signal.

δ[n− dm] ≈ 1

N

N−1∑
k=0

zkmwkn
N . (15)

As this signal only approximates the exact delay, we use it only for
backpropagation with the straight-through estimation [14]. More-
over, we normalize each gradient and regularize the parameter zm
to be closer to the unit circle. This processor has a parameter pd of
size 880 (40 delays, each delay with a complex angular frequency
and 20 log-magnitudes of an equalizer).
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1 import torch
2 from grafx import *

3 G = GRAFX()
4 in_id = G.add("in")
5 chain = ["eq", ..., "reverb"]
6 start_id, end_id = G.add_serial_chain(chain)
7 mix_id = G.add("mix")
8 G.connect(in_id, start_id)
9 G.connect(end_id, mix_id) ...

10 G_t = convert_to_tensor(G)
11 render_data = compute_render_data(G_t)
12 source = torch.rand(1, 5, 2, 2**17)
13 processors = {"eq": ZerophaseFIREqualizer(), ...

"reverb": MideSideFilteredNoiseReverb()}
14 parameters = {"eq": torch.zeros(7, 1024), ...

"reverb": torch.zeros(7, 768)}
15 output = render_grafx(source, processors,

parameters, render_data)

(a) An example code for creating and rendering a mixing console.
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(b) An example mixing console, drawn with draw_grafx. The same
notation as Fig. 1a plus n: noisegate, s: stereo imager, d: multitap delay.

Figure 2: Example usage of GRAFX for a music mixing scenario.

4. MUSIC MIXING APPLICATIONS

Example usage — Figure 2a demonstrates how we used GRAFX
to construct a graph called “music mixing console” in our compan-
ion paper [8]. Note that this is a modified and simplified version of
the original code (inside the following parentheses denote the line
numbers). First, we import the libraries (1-2). Then, we create an
empty graph (3) and add the necessary nodes. We add a single in-
put node inwith add (4). We also add a serial chain of processors
by passing a sequence of node types to add_serial_chain
(5-6). To connect the serial chain with the input node, we pass the
node indices returned by the node creation methods, in_id and
start_id, to connect (8-9). This chain corresponds to the
first upper left row of the full mixing console shown in Figure 2b.
Repeating this procedure multiple times (which is omitted) will
complete the graph. To compute its output audio, we first convert
the graph to tensors (10). Then, we compute the batched node pro-
cessing schedule and its indices with compute_render_data
(15; corresponds to the line 1-4 of Algorithm 1). With the 5 stereo
source signals of length 217 (12), differentiable audio processors
(13), and the dictionary of parameters (14), we finally obtain the
graph output with render_grafx (15; the main loop of Algo-
rithm 1). This output can be used to calculate a loss and perform
the gradient descent to match the target mix.

Speed benchmark — Finally, we evaluated the efficiency of our
batched node processing with various scheduling methods. We
benchmarked with a single RTX3090 GPU and the pruned graphs
where negligible processors are removed from the mixing consoles
[8]. Figure 3 reports the results. The optimal schedule achieves
11.8 processor calls on average. The beam (32 candidates), greedy,
and one-by-one schedules report 12.6, 16.4 and 77.6 calls, respec-
tively. The one-by-one especially increases the processor calls lin-
early to the graph size. Consequently, the batched node processing
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de
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1-by-1

Figure 3: Speed benchmark results of various scheduling methods.

improves the speed across all graph sizes, especially for large ones.
While the greedy method performs slightly worse than the optimal,
the beam search method closes this gap.

5. CONCLUSION

Several factors will determine the usefulness of the GRAFX library:
usability, flexibility, efficiency of the graph processing algorithms,
and diversity of the provided differentiable processors. Improving
these aspects and maintaining the library are left as future work.
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