Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024 (LBR)

SPECTRAL ANALYSIS OF STOCHASTIC WAVETABLE SYNTHESIS

Nicholas Boyko

New York University
New York, USA
nboyko@nyu.edu

ABSTRACT

Dynamic Stochastic Wavetable Synthesis (DSWS) is a sound syn-
thesis and processing technique that uses probabilistic waveform
synthesis techniques invented by Iannis Xenakis as a modulation/
distortion effect applied to a wavetable oscillator. The stochastic
manipulation of the wavetable provides a means to creating sig-
nals with rich, dynamic spectra. In the present work, the DSWS
technique is compared to other fundamental sound synthesis tech-
niques such as frequency modulation synthesis. Additionally, sev-
eral extensions of the DSWS technique are proposed.

1. INTRODUCTION

Wavetable and direct synthesis are two popular approaches to digi-
tal sound generation [1]. Direct synthesis utilizes a phase accumu-
lator to directly construct a digital signal, while wavetable synthe-
sis utilizes a lookup table holding a single cycle of a periodic wave-
form where the rate of indexing into the table controls the funda-
mental frequency of the output signal. Recently, Radna proposed
Dynamic Stochastic Wavetable Synthesis (DSWS) as an extension
to lannis Xenakis’s direct synthesis technique Dynamic Stochastic
Synthesis (DSS) [2,3]. It extends the basic principles of DSS by
applying dynamic, probabilistic alterations of audio sample val-
ues to a table-lookup oscillator, effectively transforming the DSS
method from a pure synthesis technique into an audio processing
algorithm for arbitrary waveforms. DSWS uses the principles of
DSS to apply pitch and amplitude deviations to a signal by altering
the table-lookup process utilized in wavetable synthesis.

The compositional utility of such a tool then lies in its dynamic
behavior across time, which is defined by the chosen parameters
and probability distributions. As such, it is useful to model and
analyze the expected change in power spectra and bandwidth of
a DSWS signal with respect to its unique parameters and proba-
bility distributions. Because DSWS employs the use of stochas-
tic processes to manipulate the sound, non-stationarities are intro-
duced to an audio signal through the parameters of the technique.
There has been some analysis on the behavior of the original DSS
procedure itself [4-7], but its extension to a more general audio
processing approach warrants further exploration and characteri-
zation. To model the characteristics of the DSWS procedure, we
compare power spectral density (PSD) across parameters and ap-
proaches.
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2. PROBABILISTIC SOUND SYNTHESIS

Probabilistic techniques have been used in sound synthesis and
computer music composition for several decades. Notable com-
posers such as John Cage and Iannis Xenakis were at the forefront,
employing indeterminate and stochastic processes in their compo-
sitions. For example, Cage’s Music of Changes used the I Ching in
the compositional process to determine aspects of the sound such
as pitch and duration [8]. In his composition HPSCHD, a FOR-
TRAN program generated random changes for parameters of syn-
thesized audio [9]. Xenakis often drew inspiration from natural
processes, coining the term “Stochastic music” and using math-
ematical models of natural systems, such as the Wiener process
for modeling Brownian motion or the Maxwell-Boltzmann kinetic
theory of gases [3]. Xenakis was concerned with the concept of
musical “density,” across both time and frequency domains. This
concept of density led to the development of granular synthesis,
a technique that segments an audio signal into small “grains” to
create signals with varied timbre while maintaining some spectral
characteristics of the source audio [10].

2.1. Dynamic Stochastic Synthesis

Dynamic Stochastic Synthesis, described in Xenakis’s book For-
malized Music, generates a single cycle of a periodic waveform by
linearly interpolating a set of breakpoints generated randomly in
the time-domain [3]. The position of the breakpoints in amplitude-
time space is altered in each successive period of the wave, creat-
ing a dynamic, varied signal with fluctuating timbre and spectra.
DSS has been extended in recent years, encompassing both real-
time implementations [4, 6, 11] and theoretical and compositional
analyses of the technique [5,7].

2.2. Dynamic Stochastic Wavetable Synthesis

The DSWS procedure proposed by Radna is summarised here,
while a more detailed treatment can be found in [2].

2.2.1. Table Lookup and Deviations

In DSWS, audio samples corresponding to one period of a wave-
form are stored in a lookup table and indexed circularly with a
phasor to generate an audio stream. With each iteration reading
through the wavetable, the amplitude values of the stored sample
data and the speed of the read phasor are modified according with
stochastic processes, affecting the pitch and and spectral content of
the output. In the present work, sinusoidal and bandlimited saw-
tooth waves are used in the wavetable, however arbitrary initial
waveforms can also be used.

The DSWS approach divides the wavetable into M segments.
Pitch deviations are applied by altering the lookup phase incre-
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ment ¢ according to a random walk at each segment index m and
linearly interpolating between existing sample values. As in the
original implementation, pitch deviation values are generated with
a MIDI value fwmipi, and converted to frequency according to
fi, = 440 Hz - o (fmmr+Pm]—69)/12 )
where P[m] is the pitch modulation value at index m. Because
of this, pitch deviations are applied in a perceptually symmetric
manner around the center frequency, which may subjectively be
considered preferable.
The amplitude deviations use an anti-clipping wavefolder ap-
proach, increasing or decreasing output values y[n] by the amount
d by which it lies outside of the range [—1, 1], according to

1—d, z[n]+a>1
yn]=qznl+a, —1<zhn]+a<l 2)
—14d, zhnl+a<-1
where d is given by
d=l|z[n] +a|—1. 3)

The amplitude deviations a are also set using a random walk, and
applied for each segment m.

2.2.2. Random Walks and Probability Distributions

The pitch and amplitude deviations are generated by second-order
random walks with uniform probability distribution and stored in
lists of length M. The generation of these random walks is a key
component of Xenakis’s original DSS algorithm, as utilized com-
positions such as GENDY3 [12]. Values are generated within some
variable bounds [—q, «], with each deviation value z[n] taking the
form

z[n] = z[n — 1] + A[n] 4)

where A[n] is given in the range [—8, 8] with 8 < «, accord-
ing to the probability distribution P(A). Thus 8 defines the step
size of the random walk. We utilize both continuous and dis-
crete probability distribution functions, namely normal, uniform,
and Cauchy continuous distributions (see Fig. 1); and Poisson and
“drunk walk” distributions. The “drunk walk” is a special case of
a Bernoulli distribution, with equal probability of a value of +-1.

In our implementation, the uniform distribution was bounded
on the range [—1, 1], and the other functions were designed so that
>99.9% of values fell within the range of [—1,1]. These proba-
bility distribution functions are then utilized for the generation of
both first-order and second-order random walks, which are stored
and read as deviation values.

3. ANALYSIS

To analyze DSWS, we utilized the power spectral density com-
puted via Welch’s method for several output signals [13]." This
calculates an average of periodograms across time, which helps to
smooth non-stationarities and account for dynamic random behav-
ior in the signal. Power spectral density is thus a natural metric for
the analysis for probabilistically altered or generated signals, such

'Audio examples and Python code associated with the figures
from this paper can be found online at https://ccrma.stanford.edu/-
~kermit/website/dsws.html.
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Figure 1: The probability density functions of normal, uniform,
and Cauchy probability distributions.

as the output of DSWS, as it allows for a more holistic view of the
expected value of a stochastic process. It is important to note that
PSD is not useful for temporal analysis. Several parameters were
evaluated. We first characterize the stochastic alterations afforded
by DSWS. In Fig. 2, the Bernoulli distribution “drunk walk” is
used to generate the pitch deviations for a sinusoidal signal at a
frequency of 10kHz.? The center frequency has constant power
across variable pitch deviation values, while the outer bandwidth
increases in direct correlation to the pitch deviation values.

We compare this behavior to a pitch deviation table generated
with a regular frequency deviation (i.e., sinusoidally modulating
the frequency parameter) in Fig. 3. A similar spectral envelope is
apparent in this figure, with side lobes appearing at integer multi-
ples of the modulation rate above and below the center frequency.
Greater bandwidth expansion is again apparent with larger pitch
deviation values. This behavior can also be compared to the spec-
trum created through direct frequency modulation (FM) synthesis.

The output y[n] of a signal generated via frequency modula-
tion synthesis can be written

(&)

with wc, wy, the carrier and modulator frequencies, and A, the
amplitude of the modulator, or modulation index. In the case of
both FM synthesis and sinusoidal DSWS pitch deviation, a con-
stant sinusoidal signal modulates the pitch of the input signal, caus-
ing bandwidth expansion with peaks at integer multiples of the
modulator frequency w,, about the carrier frequency we:

y[n] = sin(wen + A sin(wmn))

ke Z. (0)

With frequency modulation, the amplitudes of the side lobes are
related to Bessel functions of the first kind [14], and are affected
by the modulation index A,,, as seen in Fig. 4. In the sinusoidal
DSWS pitch deviation, the bandwidth expansion is more concen-
trated around the center frequency, but contains frequency content
across the entire spectrum, as seen in Fig. 3.

The bandwidth expansion effect of the pitch deviations is also
visible on complex waveforms, as in Fig. 5, in which a band-
limited sawtooth wave has pitch deviations applied according to

We + kwrru

2This frequency was chosen for visualisation purposes, to be far from
both DC and the Nyquist limit for a sample rate of 44.1 kHz.
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Figure 2: PSD for DSWS using a 10kHz sinusoidal wavetable
and stochastic pitch deviations according to a Bernoulli probabil-
ity distribution and variable pitch deviation amount.
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Figure 3: PSD for DSWS using a 10kHz sinusoidal wavetable
and pitch deviations set through sinusoidal modulation with a fre-
quency of 500 Hz and variable pitch deviation amount.

the same Bernoulli probability distribution. In the harmonically
rich spectrum case, the DSWS causes bandwidth expansion around
each spectral peak. As the pitch modulation amount increases, we
see an increase in low-frequency content in addition to the blend-
ing of adjacent spectral peaks.

The amplitude deviation parameter behaves similarly across
probability distributions, with the resultant signals visualized in
Fig. 6. A larger maximum amplitude deviation value results in a
near-constant increase in power at frequencies outside of the main
lobe, with little effect on the center frequency itself. Additionally,
the increase in power is directly correlated with an increase in the
amplitude deviation amount itself. Due to the fold-over distortion,
additional spectral peaks are introduced.

The spectra of each probability distribution are also compared
in single-segment mode with respect to pitch deviation at a max-
imum of one semitone above and below the center frequency, as
seen in Fig. 7. The bandwidths of each distribution are mostly
similar, with slight differences in the extreme spectra, likely as-
sociated with the heaviness of the tails of each probability distri-
bution. In addition, the Poisson distribution stands out due to its
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Figure 4: PSD for FM synthesis with a carrier frequency of
10kHz, modulation frequency of 500 Hz, and modulation index
(controlling the bandwidth expansion) ranging from 0 to 32.
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Figure 5: PSD for DSWS using a 5kHz band-limited sawtooth
wavetable and stochastic pitch deviations according to a Bernoulli
probability distribution and variable pitch deviation amount.

skewness, shifting the main lobe towards lower frequencies. The
two independent lobes on either side of the center frequency are
due to the use of a bounded second-order random walk for the
pitch deviations, whose values spend most of their time towards
the boundaries. As the maximum allowed pitch deviation is +1
semitone, the lobes have peaks at roughly 1 kHz above and below
the center frequency of 10 kHz.

4. FUTURE WORK

There are several potential avenues for further extension of the
DSWS technique. For instance, the implementation and choice of
probability distributions could be further considered and extended.
One example of another stochastic process favored by Xenakis is
the Wiener process for modeling Brownian motion, which has al-
ready been used in an extension to the DSS algorithm [15]. Addi-
tionally, the skewness of certain probability distributions (e.g. lo-
gistic, Poisson) is another potential variable for altering the spec-
tral content of the output signal. The analyses presented in this
work suggest that a skewed distribution would present asymmetric
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Figure 6: PSD for DSWS using a 10 kHz sinusoidal wavetable and
stochastic amplitude deviations with variable amplitude deviation
amount.
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Figure 7: PSD for DSWS using a 10 kHz sinusoidal wavetable and
stochastic pitch deviations according to each probability distribu-
tion, with a maximum deviation of one semitone.

bandwidth expansion in the output signal.

As described by Radna, segmenting the wavetable also affects
the bandwidth of the signal, with a larger number of segments
producing a brighter sound. In our implementation, segments are
generated with evenly distributed divisions of the wavetable, but
generating segments randomly or according to points of large dif-
ferential in the slope of the signal could provide unique behavior.

Lastly, further steps to prevent aliasing could be investigated.
A naive 8x oversampling approach with an anti-aliasing lowpass
filter was able to remove aliased peaks in the spectrum created by
amplitude deviation, such as those seen in Fig. 6. Rather than over
sampling, it could be beneficial to smooth the pertubed wavetable
using the method presented in [16].

5. CONCLUSIONS

In the present work, we have evaluated the characteristic band-
width expansion of the Dynamic Stochastic Wavetable Synthe-
sis technique with respect to several probability distribution func-
tions. The behavior of DSWS presents a novel alternative to classi-
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cal non-linear synthesis techniques such as frequency modulation
(FM) synthesis as well as direct digital synthesis techniques, while
maintaining real-time performance and efficiency. Additionally,
as an audio processing unit, DSWS presents itself as a versatile
method for introducing stochastic volatility into an audio stream
while maintaining timbral characteristics of the source audio. Fi-
nally, we hope this analysis of the DSWS algorithm parameter
space will inspire others when describing new sound synthesis and
processing techniques.
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