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ABSTRACT

Guitar tablature transcription (GTT) aims at automatically gener-
ating symbolic representations from real solo guitar performances.
Due to its applications in education and musicology, GTT has
gained traction in recent years. However, GTT robustness has been
limited due to the small size of available datasets. Researchers
have recently used synthetic data that simulates guitar performances
using pre-recorded or computer-generated tones, allowing for scal-
able and automatic data generation. The present study comple-
ments these efforts by demonstrating that GTT robustness can be
improved by including synthetic training data created using record-
ings of real guitar tones played with different audio effects. We
evaluate our approach on a new evaluation dataset with profes-
sional solo guitar performances that we composed and collected,
featuring a wide array of tones, chords, and scales.

1. INTRODUCTION

Guitar tablature transcription (GTT), a form of automatic music
transcription (AMT) [1, 2], involves transcribing real guitar per-
formances into tablatures [3, 4]. Unlike standard Western nota-
tion, tablatures intuitively illustrate finger placements, and are thus
of high relevance for music education [5, 6], musicological re-
search [7], guitar performance theory [8–10], and general com-
munication of artistic expression.

Significant advances in GTT have been achieved through deep
learning models, primarily trained and evaluated using the Gui-
tarSet dataset [11–18]. However, its limited size has led to poor
generalization capabilities [19]. This is the well-known “domain-
shift problem” in machine learning, which explains model failures
in real-world applications due to discrepancies between the train-
ing conditions and actual usage environments [20]. Therefore, as-
sessment of GTT model robustness in new domains is essential to
understand their usefulness. Data augmentation is a common tech-
nique to mitigate “domain-shift”. By systematically modifying ex-
isting data or metadata, additional examples can be generated and
used as training data, thereby expanding a model’s familiarity with
a wider data distribution [21]. This technique has recently shown
improvements in related tasks like sound event detection [22–25].

In the case of GTT, data augmentation can be carried out by
taking existing tablatures to guide the temporal placement of pre-
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recorded or synthesized individual guitar tones to simulate a guitar
performance. Zang et al. [19] recently used this technique with
commercially-available guitar synthesizers.

We want to investigate whether diversifying the timbres present
in training data by including audio effects improves GTT. Since
recording and annotating solo guitar with audio effects is highly
time-intensive, we draw inspiration from Zang et al.’s SynthTab [19]
to scalably simulate guitar performances from guitar tablature. How-
ever, instead of using synthetic guitar tones (i.e. “MIDI”), we hy-
pothesize that GTT robustness can be enhanced by two factors:
the exclusive use of real guitar tones and audio effects to generate
synthetic data for model training.

Finally, after training we assess model robustness using a new
dataset of professional solo guitar performances that we composed
and collected for this study. This new dataset features a diverse
array of performance styles. Therefore, our key contributions are:

1. A scalable method to generate data to train GTT models
using real recordings of guitar tones and audio effects.

2. A new dataset for evaluating GTT models.
3. A benchmark clearly demonstrating the benefits of our ap-

proach for model robustness.
We release our code to reproduce our data generation and model
training, as well as the new dataset we collected for this study1.

2. METHODS

2.1. Datasets for training and validation

Like Wiggins & Kim [12], we train TabCNN using GuitarSet [11]
for training and cross-validation. Additionally, we introduced two
synthetic datasets to expand the data used for model training: Gui-
tarSetFX and GuitarProFX. Our approach maximizes tone diver-
sity by randomly selecting tones from a large set of pre-recorded
single guitar notes. Thus, in our synthetic solo guitar performances,
melodies and chords consists of notes played with varied guitar
tones and audio effects. This data generation strategy aligns with
our hypothesis that such diversity will enhance the model’s ro-
bustness, allowing it to concentrate on pitch content and guitar
string+fret inference, while disregarding specific timbre qualities.

The guitar tone set we use for GuitarSetFX and GuitarProFX
includes the clean tones and effects from EGFxSet2, which used a
2004 Fender Stratocaster guitar [26]. Additionally, we recorded all
possible clean notes in a 1978 Ibanez Performer 300 guitar, using

1robust-guitar-tabs.github.io.
2We exclude the tones processed through the “delay” effect due to au-

dibly repeated tone onsets that would confuse our model.
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Table 1: TabCNN performance on GuitarSet. Averages (± denotes the standard deviation) across the six hold-out folds. Top row: metrics
by Wiggins & Kim [12] (we could reproduce their results). Bottom rows: outcomes when training data includes simulated tracks.

Multi-pitch estimation Tablature estimation

F1 P R F1 P R TDR

TabCNN [12] 0.826±0.025 0.900±0.016 0.764±0.043 0.748±0.047 0.809±0.029 0.696±0.061 0.899±0.033
+ GuitarSetFX 0.837±0.019 0.904±0.019 0.785±0.038 0.746±0.030 0.795±0.022 0.708±0.044 0.896±0.021
+ GuitarProFX 0.830±0.018 0.908±0.014 0.769±0.027 0.743±0.029 0.802±0.029 0.696±0.035 0.900±0.021

alternate-picking technique and captured through direct input via
an Audient iD14 audio interface, also miked through an Orange
CR-60 amplifier with a Shure sm57 microphone. The amplifier
settings were adjusted with bass and treble knobs at 5 and plate
reverb at 3.

GuitarSetFX reproduces the 360 guitar performance tracks of
GuitarSet, while GuitarProFX comprises 360 randomly-chosen solo
performance tracks from DadaGP [27]. All resulting audio clips
are resampled to the 22050Hz sampling rate expected by TabCNN.

2.2. Model training, and validation

The GTT model we train is TabCNN, using the implementation
in AMT tools [13]3. More specifically, we train three different
TabCNN models. The first one is a reproduction of the six-fold
cross-validated training setup by Wiggins & Kim [12]. The second
one follows the same cross-validation but duplicates the training
data using the corresponding synthetic GuitarSetFX tracks. The
third one also follows the same cross-validation but adds all the
synthetic GuitarProFX tracks to the training split. All other aspects
of the training setup remain the same as in the original TabCNN
implementation, including model architecture, optimizer, learning
rate, batch size, and validation data [12].

2.3. The EGSet12 evaluation set

Furthermore, we introduce EGSet12, a new evaluation set with
twelve original solo electric guitar performances (31.65 seconds
avg. duration, totaling 379.8 seconds). These pieces were com-
posed by a professional musician and guitar player for this project,
showcasing the full tonal range of the electric guitar across diverse
melodies and chord complexities. EGSet12 encompasses a broad
spectrum of styles, including pop, funk, jazz and twelve-tone, re-
flecting varied tonalities, keys, rhythms, and modes.

EGSet12 was performed by a single professional guitarist us-
ing a Sire T7 Telecaster guitar and a Yamaha B15 amplifier. The
performance setup allowed the performer to freely select the gui-
tar’s volume and tone knobs, also allowing techniques like alter-
nate picking, hybrid picking, and palm mute. We captured the
performance using an ECM8000 microphone positioned 15 cen-
timeters from the amplifier and connected to a UMC202 HD au-
dio interface (original sampling rate of 48000Hz; resampled to
22050Hz for model inference). This recording setup differs sig-
nificantly from those used in any of the training and validation
datasets that we used, offering a new testing domain. EGSet12,
offers realism, tone diversity, and varied playing styles, making it
valuable for assessing GTT model robustness.

3github.com/cwitkowitz/amt-tools.

EGSet12 features a realistic noisy recording setup and diverse
guitar tones and techniques. Other than the amplifier, its content
was not processed using other guitar effects. Future research can
process it through more effects to further study model robustness.

2.4. Metrics

Consistent with Wiggins & Kim [12], we use two types of met-
rics: multi-pitch and tablature estimation. Multi-pitch metrics as-
sess model performance at the level of pitch estimation and can
be thought of as independent of the guitar hardware. Tablature
estimation metrics assess the model’s ability to determine which
specific string and fret produced a tone. Both are broken down by
F1 score, precision, and recall. Additionally, the tablature disam-
biguation rate (TDR) calculates how often a correctly-identified
pitch gets assigned to the correct fret and string.

3. RESULTS

3.1. GuitarSet cross-validation

First, we assessed TabCNN performance on GuitarSet during its
cross-validated training. Table 1 shows the results. In general, we
observe slight improvements when the training set includes syn-
thetic data with effect tones. However, these improvements are
minor. This indicates that cross-validated performance of TabCNN
on GuitarSet does not benefit (or suffer) much from the addition of
synthetic data with guitar effects.

3.2. Model evaluation on the new EGSet12 test domain

Next, we assessed the three models on EGSet12, with results pre-
sented in Table 2. Although, model performance was comparable
during cross-validation with GuitarSet (see Table 1), evaluation on
EGSet12 showed that models trained with synthetic data using au-
dio effects exhibited superior generalization. Notably, the F1 score
improved more than 10 percentage points for both multi-pitch and
tablature estimation, primarily driven by major gains in model re-
call. Precision remained consistent across models for multi-pitch
metrics but showed improvements of ∼9 points in GuitarProFX
tablature estimation and slightly over 5 points in GuitarSetFx. Fi-
nally, the TDR also saw improvements of more than 10 points for
the model trained using the GuitarProFX data.

3.3. Qualitative comparison of TabCNN models on EGSet12

Figure 1 shows a qualitative comparison between the TabCNN
models we tested on EGSet12. The first two columns in Figure 1
feature musical excerpts showing that TabCNN trained with Gui-
tarProFx demonstrated greater stability, meaning that it did not ex-
hibit constant string jumping when trying to locate the guitar notes
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Table 2: TabCNN performance on EGSet12. Each cell is a metric averaged across the twelve tracks (± denotes the standard deviation).
Top row: performance as trained by Wiggins & Kim [12]. Bottom rows: performance when training data includes simulated tracks.
“*” denotes a statistically-significant difference (p < 0.05 via t-test) compared to the model by Wiggins & Kim [12]. “⋄” denotes a
marginally-significant difference (0.1 > p > 0.05). The underlying distributions of significant (or marginally-significant) comparisons are
normal-shaped based on the D’Agostino and Pearson’s test.

Multi-pitch estimation Tablature estimation

F1 P R F1 P R TDR

TabCNN [12] 0.638±0.060 0.819±0.080 0.530±0.067 0.447±0.071 0.565±0.089 0.375±0.067 0.695±0.075
+ GuitarSetFX 0.740±0.055* 0.835±0.085 0.679±0.052⋄ 0.557±0.088 0.619±0.100* 0.518±0.084 0.755±0.106
+ GuitarProFX 0.719±0.061⋄ 0.839±0.082 0.647±0.068 0.585±0.084 0.658±0.073* 0.541±0.087⋄ 0.819±0.075⋄
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TabCNN trained with GuitarSet + GuitarProFx

EGSet12 Scale Example EGSet12 Chord Example EGSet12 Complex Example

Figure 1: Each column is a two-second EGSet12 excerpt, comparing models trained using GuitarSet, with and without GuitarProFX,
against ground truth. Each circled number is a tracked note on a specific guitar fret over time, the vertical lines indicate musical beats.

in the audio signal. Therefore, its predictions of chords and indi-
vidual notes were more aligned with ground truth.

The third column is a more challenging example. It shows
that both models’ performance decreased when processing com-
plex musical passages with harmonic content across multiple si-
multaneous strings and dissonances such as minor seconds. Ad-
ditionally, both models struggled to make good predictions for the
higher frets, as most training data features fret numbers below 12.
However, in both cases, some pitch predictions were accurate as
tablature was associated with possible fingerings in other frets.

4. DISCUSSION

Our results in Table 2, showing the benefits of synthetic training
data, are consistent with empirical evidence from the sound event
detection literature [22–25]. An interesting observation is the fact
that the benefit size was not evident during the cross-validated
training (see Table 1). This highlights the importance of evalu-
ating GTT on new, structured domains and controlled scenarios
(like EGSet12) to assess model robustness accurately.

Another point of discussion is how valid EGSet12 is as a test
set for GTT. For example, considering EGSet12 uses an electric
guitar, is it fair to use it to evaluate GTT models trained with an
acoustic guitar dataset (i.e GuitarSet)?. We believe that this is the
case since in our setup the electric guitar used in EGSet12 and
all recording hardware (including microphone, amplifier, and in-
terface) is different from not just GuitarSet, but also GuitarSetFX,
and GuitarProFX. The fact that tablature estimation precision is
higher on EGSet12 for models trained using GuitarSetFX or Gui-
tarProFX (see table 2) may suggest an advantage due to the fact
that these datasets used electric guitars. However, the more than
10-point increase in multi-pitch estimation F1 indicates that model
robustness is driven by correct inference of pitch content. There-
fore, our evidence suggests that EGSet12 is a fair benchmark.

We studied how using real guitar tones processed through au-
dio effects hardware to generate training data improves GTT model
robustness. Therefore, our current study is inspired by SynthTab [19]
and is not a comparison against it. It is worth noting, however, that
we used considerably less synthetic data than SynthTab (we only
synthesized 360 tracks to train each model, while SynthTab added
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6,700 hours [19]). In future work, we will systematically explore
the impacts of the various factors that go into simulating guitar per-
formances, such as including real versus computer-generated tones
and/or effects, the impact of delay effects that repeat the onset of a
tone, and the amount of data used for training.

5. CONCLUSION

We have demonstrated the impact that using synthetic guitar per-
formances as training data has on the robustness of GTT mod-
els. Specifically, we leveraged guitar tablatures to produce these
performances using real recordings of electric guitar notes with a
wide array of processing that included real audio effects hardware.
We showed increased model robustness on multi-pitch and tabla-
ture prediction metrics via our proposed method. In the future, we
look forward to enhancing datasets for GTT using our methodol-
ogy and systematically studying all the parameters involved in the
data generation, such as dataset size or tone diversity.
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