A Real-Time Synthesis Oriented Tanpura Model

Maarten van Walstijn; Jamie Bridges; Sandor Mehes
DAFx-2016 - Brno
Physics-based synthesis of tanpura drones requires accurate simulation of stiff, lossy string vibrations while incorporating sustained contact with the bridge and a cotton thread. Several challenges arise from this when seeking efficient and stable algorithms for real-time sound synthesis. The approach proposed here to address these combines modal expansion of the string dynamics with strategic simplifications regarding the string-bridge and stringthread contact, resulting in an efficient and provably stable timestepping scheme with exact modal parameters. Attention is given also to the physical characterisation of the system, including string damping behaviour, body radiation characteristics, and determination of appropriate contact parameters. Simulation results are presented exemplifying the key features of the model.