Towards Transient Restoration in Score-informed Audio Decomposition

Christian Dittmar; Meinard Mueller
DAFx-2015 - Trondheim
Our goal is to improve the perceptual quality of transient signal components extracted in the context of music source separation. Many state-of-the-art techniques are based on applying a suitable decomposition to the magnitude of the Short-Time Fourier Transform (STFT) of the mixture signal. The phase information required for the reconstruction of individual component signals is usually taken from the mixture, resulting in a complex-valued, modified STFT (MSTFT). There are different methods for reconstructing a time-domain signal whose STFT approximates the target MSTFT. Due to phase inconsistencies, these reconstructed signals are likely to contain artifacts such as pre-echos preceding transient components. In this paper, we propose a simple, yet effective extension of the iterative signal reconstruction procedure by Griffin and Lim to remedy this problem. In a first experiment, under laboratory conditions, we show that our method considerably attenuates pre-echos while still showing similar convergence properties as the original approach. A second, more realistic experiment involving score-informed audio decomposition shows that the proposed method still yields improvements, although to a lesser extent, under non-idealized conditions.