One-to-Many Conversion for Percussive Samples

Jon Fagerström; Sebastian J. Schlecht; Vesa Välimäki
DAFx-2021 - Vienna (virtual)
A filtering algorithm for generating subtle random variations in sampled sounds is proposed. Using only one recording for impact sound effects or drum machine sounds results in unrealistic repetitiveness during consecutive playback. This paper studies spectral variations in repeated knocking sounds and in three drum sounds: a hihat, a snare, and a tomtom. The proposed method uses a short pseudo-random velvet-noise filter and a low-shelf filter to produce timbral variations targeted at appropriate spectral regions, yielding potentially an endless number of new realistic versions of a single percussive sampled sound. The realism of the resulting processed sounds is studied in a listening test. The results show that the sound quality obtained with the proposed algorithm is at least as good as that of a previous method while using 77% fewer computational operations. The algorithm is widely applicable to computer-generated music and game audio.