A Low-Latency Quasi-Linear-Phase Octave Graphic Equalizer

Valeria Bruschi; Vesa Välimäki; Juho Liski; Stefania Cecchi
DAFx-2022 - Vienna
This paper proposes a low-latency quasi-linear-phase octave graphic equalizer. The structure is derived from a recent linearphase graphic equalizer based on interpolated finite impulse response (IFIR) filters. The proposed system reduces the total latency of the previous equalizer by implementing a hybrid structure. An infinite impulse response (IIR) shelving filter is used in the structure to implement the first band of the equalizer, whereas the rest of the band filters are realized with the linear-phase FIR structure. The introduction of the IIR filter causes a nonlinear phase response in the low frequencies, but the total latency is reduced by 50% in comparison to the linear-phase equalizer. The proposed graphic equalizer is useful in real-time audio processing, where only little latency is tolerated.