Time-Varying Filter Stability and State Matrix Products

Kurt James Werner; Russell McClellan
DAFx-2022 - Vienna
We show a new sufficient criterion for time-varying digital filter stability: that the matrix norm of the product of state matrices over a certain finite number of time steps is bounded by 1. This extends Laroche’s Criterion 1, which only considered one time step, while hinting at extensions to two time steps. Further extending these results, we also show that there is no intrinsic requirement that filter coefficients be frozen over any time scale, and extend to any dimension a helpful theorem that allows us to avoid explicitly performing eigen- or singular value decompositions in studying the matrix norm. We give a number of case studies on filters known to be time-varying stable, that cannot be proven time-varying stable with the original criterion, where the new criterion succeeds.