Barberpole Phasing and Flanging Illusions

Fabian Esqueda; Vesa Välimäki; Julian Parker
DAFx-2015 - Trondheim
Various ways to implement infinitely rising or falling spectral notches, also known as the barberpole phaser and flanging illusions, are described and studied. The first method is inspired by the Shepard-Risset illusion, and is based on a series of several cascaded notch filters moving in frequency one octave apart from each other. The second method, called a synchronized dual flanger, realizes the desired effect in an innovative and economic way using two cascaded time-varying comb filters and cross-fading between them. The third method is based on the use of single-sideband modulation, also known as frequency shifting. The proposed techniques effectively reproduce the illusion of endlessly moving spectral notches, particularly at slow modulation speeds and for input signals with a rich frequency spectrum. These effects can be programmed in real time and implemented as part of a digital audio processing system.