Universal Audio Synthesizer Control with Normalizing Flows
The ubiquity of sound synthesizers have reshaped music production and even entirely define new music genres. However, the increasing complexity and number of parameters in modern synthesizers make them harder to master. Hence, the development of methods allowing to easily create and explore with synthesizers is a crucial need. Here, we introduce a radically novel formulation of audio synthesizer control by formalizing it as finding an organized continuous latent space of audio that represents the capabilities of a synthesizer and map this space to the space of synthesis parameter. By using this formulation, we show that we can address simultaneously automatic parameter inference, macro-control learning and audio-based preset exploration within a single model. To solve this new formulation, we rely on Variational Auto-Encoders (VAE) and Normalizing Flows (NF) to organize and map the respective auditory and parameter spaces. We introduce a new type of NF named regression flows that allow to perform an invertible mapping between separate latent spaces, while steering the organization of some of the latent dimensions. We evaluate our proposal against a large set of baseline models and show its superiority in both parameter inference and audio reconstruction. We also show that the model disentangles the major factors of audio variations as latent dimensions, that can be directly used as macro-parameters. Finally, we discuss the use of our model in several creative applications and introduce real-time implementations in Ableton Live