Antiderivative Antialiasing in Nonlinear Wave Digital Filters
A major problem in the emulation of discrete-time nonlinear systems, such as those encountered in Virtual Analog modeling, is
aliasing distortion. A trivial approach to reduce aliasing is oversampling. However, this solution may be too computationally demanding for real-time applications. More advanced techniques
to suppress aliased components are arbitrary-order Antiderivative
Antialiasing (ADAA) methods that approximate the reference nonlinear function using a combination of its antiderivatives of different orders. While in its original formulation it is applied only
to memoryless systems, recently, the applicability of first-order
ADAA has been extended to stateful systems employing their statespace description. This paper presents an alternative formulation
that successfully applies arbitrary-order ADAA methods to Wave
Digital Filter models of dynamic circuits with one nonlinear element. It is shown that the proposed approach allows us to design
ADAA models of the nonlinear elements in a fully local and modular fashion, independently of the considered reference circuit. Further peculiar features of the proposed approach, along with two
examples of applications, are discussed.