A Physical Model of the Trombone Using Dynamic Grids for Finite-Difference Schemes
In this paper, a complete simulation of a trombone using finitedifference time-domain (FDTD) methods is proposed. In particular, we propose the use of a novel method to dynamically vary the
number of grid points associated to the FDTD method, to simulate
the fact that the physical dimension of the trombone’s resonator
dynamically varies over time. We describe the different elements
of the model and present the results of a real-time simulation.