Piano sound emulation has been an active topic of research and development for several decades. Although comprehensive physicsbased piano models have been proposed, sample-based piano emulation is still widely utilized for its computational efficiency and
relative accuracy despite presenting significant memory storage
requirements. This paper proposes a novel hybrid approach to
sample-based piano synthesis aimed at improving the fidelity of
sound emulation while reducing memory requirements for storing samples. A neural network-based model processes the sound
recorded from a single example of piano key at a given velocity.
The network is trained to learn the nonlinear relationship between
the various velocities at which a piano key is pressed and the corresponding sound alterations. Results show that the method achieves
high accuracy using a specific neural architecture that is computationally efficient, presenting few trainable parameters, and it requires memory only for one sample for each piano key.