Parametric Spatial Audio Effects Based on the Multi-Directional Decomposition of Ambisonic Sound Scenes

Leo McCormack; Archontis Politis; Ville Pulkki
DAFx-2021 - Vienna (virtual)
Decomposing a sound-field into its individual components and respective parameters can represent a convenient first-step towards offering the user an intuitive means of controlling spatial audio effects and sound-field modification tools. The majority of such tools available today, however, are instead limited to linear combinations of signals or employ a basic single-source parametric model. Therefore, the purpose of this paper is to present a parametric framework, which seeks to overcome these limitations by first dividing the sound-field into its multi-source and ambient components based on estimated spatial parameters. It is then demonstrated that by manipulating the spatial parameters prior to reproducing the scene, a number of sound-field modification and spatial audio effects may be realised; including: directional warping, listener translation, sound source tracking, spatial editing workflows and spatial side-chaining. Many of the effects described have also been implemented as real-time audio plug-ins, in order to demonstrate how a user may interact with such tools in practice.
Download