HD-AD: A New Approach to Audio Atomic Decomposition with Hyperdimensional Computing
In this paper, we approach the problem of atomic decomposition of audio at the symbolic level of atom parameters through the lens of hyperdimensional computing (HDC) – a non-traditional computing paradigm. Existing atomic decomposition algorithms often operate using waveforms from a redundant dictionary of atoms causing them to become increasingly memory/computationally intensive as the signal length grows and/or the atoms become more complicated. We systematically build an atom encoding using vector function architecture (VFA), a field of HDC. We train a neural network encoder on synthetic audio signals to generate these encodings and observe that the network can generalize to real recordings. This system, we call Hyperdimensional Atomic Decomposition (HD-AD), avoids time-domain correlations all together. Because HD-AD scales with the sparsity of the signal, rather than its length in time, atomic decompositions are often produced much faster than real-time.