A 3D Multi-Plate Environment for Sound Synthesis

Alberto Torin; Stefan Bilbao
DAFx-2013 - Maynooth
In this paper, a physics-based sound synthesis environment is presented which is composed of several plates, under nonlinear conditions, coupled with the surrounding acoustic field. Equations governing the behaviour of the system are implemented numerically using finite difference time domain methods. The number of plates, their position relative to a 3D computational enclosure and their physical properties can all be specified by the user; simple control parameters allow the musician/composer to play the virtual instrument. Spatialised sound outputs may be sampled from the simulated acoustic field using several channels simultaneously. Implementation details and control strategies for this instrument will be discussed; simulations results and sound examples will be presented.
Download