This paper discusses compact-stencil nite difference time domain (FDTD) schemes for approximating the 2D wave equation in the context of digital audio. Stability, accuracy, and efciency are investigated and new ways of viewing and interpreting the results are discussed. It is shown that if a tight accuracy constraint is applied, implicit schemes outperform explicit schemes. The paper also discusses the relevance to digital waveguide mesh modelling, and highlights the optimally efcient explicit scheme.