The recently proposed antiderivative antialiasing (ADAA) technique for stateful systems involves two key features: 1) replacing a nonlinearity in a physical model or virtual analog simulation
with an antialiased nonlinear system involving antiderivatives of
the nonlinearity and time delays and 2) introducing a digital filter
in cascade with each original delay in the system. Both of these
features introduce the same delay, which is compensated by adjusting the sampling period. The result is a simulation with reduced
aliasing distortion. In this paper, we study ADAA using equivalent
circuits, answering the question: “Which electrical circuit, discretized using the bilinear transform, yields the ADAA system?”
This gives us a new way of looking at the stability of ADAA and
how introducing extra filtering distorts a system’s response. We
focus on the Wave Digital Filter (WDF) version of this technique.