Perceptual evaluation of weighted multi-channel binaural format

Emmanuel Rio; Guillaume Vandernoot; Olivier Warusfel
DAFx-2003 - London
This paper deals with perceptual evaluation of an efficient method for creating 3D sound material on headphones. The two main issues of the classical two-channel binaural rendering technique are computational cost and individualization. These two aspects are emphasized in the context of a general-purpose 3D auditory display. The multi-channel binaural synthesis tries to provide solutions. Several studies have been dedicated to this approach where the minimum-phase parts of the Head-Related Transfer Functions (HRTFs) are linearly decomposed in the purpose of achieving a separation of the direction and frequency variables. The present investigation aims at improving this model, making use of weighting functions applied to the reconstruction error, in order to focus modeling effort on the most perceptually relevant cues in the frequency or spatial domain. For validating the methodology, a localization listening test is undertaken, with static stimuli, using a reporting interface which allows a minimization of interpretation errors. Beyond the optimization of the binaural implementation, one of the main questions addressed by the study is the search for a perceptually relevant definition of a reconstruction error.