Nonlinear Strings based on Masses and Springs
Due to advances in computational power, physical modelling for sound synthesis has gained an increased popularity over the past decades. Although much work has been done to accurately simulate existing physical systems, much less work exists on the use of physical modelling simply for the sake of creating sonically interesting sounds. This work presents a mass-spring network, inspired by existing models of the physical string. Masses have 2 translational degrees of freedom (DoF), and the springs have an additional equilibrium separation term, which together result in highly nonlinear effects. The main aim of this work is to create sonically interesting sounds while retaining some of the natural qualities of the physical string, as opposed to accurately simulating it. Although the implementation exhibits chaotic behaviour for certain choices of parameters, the presented system can create sonically interesting timbres, including nonlinear pitch glides and ‘wobbles’.