Identification of individual guitar sounds by support vector machines
This paper introduces an automatic classification system for the identification of individual classical guitars by single notes played on these guitars. The classification is performed by Support Vector Machines (SVM) that have been trained with the features of the single notes. The features used for classification were the time series of the partial tones, the time series of the MFCCs (Mel Frequency Cepstral Coefficients), and the “nontonal” contributions to the spectrum. The influences of these features on the classification success are reported. With this system, 80% of the sounds recorded with three different guitars were classified correctly. A supplementary classification experiment was carried out with human listeners resulting in a rate of 65% of correct classifications.