Parametric Coding of Spatial Audio
Recently, there has been a renewed interest in techniques for coding of stereo and multi-channel audio signals. Stereo and multichannel audio signals evoke an auditory spatial image in a listener. Thus, in addition to pure redundancy reduction, a receiver model which considers properties of spatial hearing may be used for reducing the bitrate. This has been done in previous techniques by considering the importance of interaural level difference cues at high frequencies and by considering the binaural masking level difference when computing the masked threshold for multiple audio channels. Recently, a number of more systematic and parameterized such techniques were introduced. In this paper an overview over a technique, denoted binaural cue coding (BCC), is given. BCC represents stereo or multichannel audio signals as a single or more downmixed audio channels plus side information. The side information contains the interchannel cues inherent in the original audio signal that are relevant for the perception of the properties of the auditory spatial image. The relation between the inter-channel cues and attributes of the auditory spatial image is discussed. Other applications of BCC are discussed, such as joint-coding of independent audio signals providing flexibility at the decoder to mix arbitrary stereo, multichannel, and binaural signals.