This paper addresses identification of nonlinear circuits for
power-balanced virtual analog modeling and simulation. The proposed method combines a port-Hamiltonian system formulation
with kernel-based methods to retrieve model laws from measurements. This combination allows for the estimated model to retain
physical properties that are crucial for the accuracy of simulations,
while representing a variety of nonlinear behaviors. As an illustration, the method is used to identify a nonlinear passive peaking
EQ.