In this work, a number of numerical schemes are presented in the
context of virtual-analog simulation. The schemes are linearlyimplicit in character, and hence directly solvable without iterative
methods. Schemes of increasing order of accuracy are constructed,
and convergence and stability conditions are proven formally. The
schemes are able to handle stiff problems very efficiently, because
of their fast update, and can be run at higher sample rates to reduce
aliasing. The cases of the diode clipper and ring modulator are
investigated in detail, including several numerical examples.