Numerical Simulation of Spring Reverberation

Stefan Bilbao
DAFx-2013 - Maynooth
Virtual analog modeling of spring reverberation presents a challenging problem to the algorithm designer, regardless of the particular strategy employed. The difficulties lie in the behaviour of the helical spring, which, due to its inherent curvature, shows characteristics of both coherent and dispersive wave propagation. Though it is possible to emulate such effects in an efficient manner using audio signal processing constructs such as delay lines (for coherent wave propagation) and chains of allpass filters (for dispersive wave propagation), another approach is to make use of direct numerical simulation techniques, such as the finite difference time domain method (FDTD) in order to solve the equations of motion directly. Such an approach, though more computationally intensive, allows a closer link with the underlying model system— and yet, there are severe numerical difficulties associated with such designs, and in particular anomalous numerical dispersion, requiring some care at the design stage. In this paper, a complete model of helical spring vibration is presented; dispersion analysis from an audio perspective allows for model simplification. A detailed description of novel FDTD designs follows, with special attention is paid to issues such as numerical stability, loss modeling, numerical boundary conditions, and computational complexity. Simulation results are presented.
Download